Welcome!

Websphere Authors: Liz McMillan, Elizabeth White, Pat Romanski, Carmen Gonzalez, Sanjeev Sharma

Related Topics: Websphere, Java

Websphere: Article

Unveiling the java.lang.Out OfMemoryError

And dissecting Java heap dumps

When we encounter a java.lang.OutOfMemoryError, we often find that Java heap dumps, along with other artifacts, are generated by the Java Virtual Machine. If you feel like jumping right into a Java heap dump when you get a java.lang.OutOfMemoryError, don't worry, it's a normal thought. You may be able to discover something serendipitously, but it's not always the best idea to analyze Java heap dumps, depending on the situation you are facing. We first need to investigate the root cause of the java.lang.OutOfMemoryError.

Only after the root cause is identified can we decide whether or not to analyze Java heap dumps. What is a java.lang.OutOfMemoryError? Why in the world does it occur? Let's find out.

What Is a java.lang.OutOfMemoryError?
A java.lang.OutOfMemoryError is a subclass of java.lang.VirtualMachineError that is thrown when the Java Virtual Machine is broken or has run out of resources that are necessary to continue the operation of the Java Virtual Machine. Obviously, memory is the exhausted resource for a java.lang.OutOfMemoryError, which is thrown when the Java Virtual Machine cannot allocate an object due to memory constraints. Unfortunately, the Java specification of java.lang.OutOfMemoryError does not elaborate further on what kind of memory it's talking about.

There are six different types of runtime data areas, or memory areas, in the Java Virtual Machine (see Figure 1).

  1. Program Counter Register
  2. Java Virtual Machine Stack
  3. Heap
  4. Method Area
  5. Runtime Constant Pool
  6. Native Method Stack

The Program Counter Register, also known as the pc register, stores the address of the Java byte code instruction that is currently being executed (just like the processor register in your central processing unit of the device from which you are reading or printing this article). You will not see a java.lang.OutOfMemoryError from the pc register since a program counter is not conventionally considered as a memory.

Java Virtual Machine Stacks contain frames where data, return values, and partial execution results are stored. Java Virtual Machine Stacks can be expanded during runtime. If there's not enough memory for the expansion of an existing Java Virtual Machine stack, or for the creation of a new Java Virtual Machine stack for a new thread, the Java Virtual Machine will throw a java.lang.OutOfMemoryError.

The Heap is where instances of Java classes and arrays are allocated. A java.lang.OutOfMemoryError will be thrown when there is not enough memory available for instances of Java classes or arrays.

The Method Area stores class-related information, the runtime constant pool, for instances, the code for methods and constructors, and field/method data. If there's not enough memory in the method area, you will encounter java.lang.OutOfMemoryError.

The Runtime Constant Pool contains constants such as field references and literals. A java.lang.OutOfMemoryError will be thrown when not enough memory is available for the construction of the runtime constant pool area.

Native Memory Stacks store conventional stacks, also known as C stacks, to support native methods that are written in a non-Java language such as C/C++. Native memory stacks can be expanded during runtime. If there's not enough memory for the expansion of an existing native memory stack or for the creation of a new native memory stack for a new thread, you would see a java.lang.OutOfMemoryError.

You may have seen a java.lang.StackOverflowError, which is completely different from a java.lang.OutOfMemoryError. A java.lang.StackOverflowError is thrown when native memory stacks or Java Virtual Machine stacks need more memory than is configured. In most IBM Java Virtual Machine implementations, the -Xmso command-line option controls the stack size for operation system threads or native thread, and the -Xss command-line option controls the stack size for Java threads. In some implementations, such as Sun Microsystems HotSpot Java Virtual Machine, the Java methods share stack frames with C/C++ native code. The maximum stack size for a thread can be configured with the -Xss Java command-line option. The default sizes of these options vary by platform and implementation, but are usually between 256 Kbytes-1024 Kbytes. Please refer to the documentation of your Java virtual machine for more specific information. We will cover more about java.lang.StackOverflowError in a separate article.

Now that we understand which memory areas could cause a java.lang.OutOfMemoryError, let's take a look at actual error messages. What does a java.lang.OutOfMemoryError look like and how can I address each symptom? Have you ever seen a java.lang.OutOfMemoryError similar to the following?

java.lang.OutOfMemoryError: Requested array size exceeds VM limit

This error message indicates that there is a memory request for an array but that's too large for a predefined limit of a virtual machine. What do we do if we encounter this kind of java.lang.OutOfMemoryError? We need to check the source code to make sure that there's no huge array created dynamically or statically. Fortunately, latest virtual machines usually do not have this limit.

java.lang.OutOfMemoryError: PermGen space

You will see an OutOfMemoryError when the Permanent Generation area of the Java heap is full, like the above message.

On some Java Virtual Machines, such as Sun Microsystems' HotSpot Java Virtual Machine, a dedicated memory area called permanent generation (or permanent region) stores objects that describe classes and methods. We can visualize the usage of a permanent generation with the IBM Pattern Modeling and Analysis Tool for the Java Garbage Collector.

In Figure 2 we enabled the "Max Perm" button and  the "Used Tenured" button to visualize permanent generation usage and its maximum size. We can see that the used amount of permanent generation reaches its maximum limit. That's why we're getting the java.lang.OutOfMemoryError: PermGen space message. If there's no memory leak, we can just use the -XX:MaxPermSize command-line option to increase the maximum limit of the permanent generation. For example,

-XX:MaxPermSize=128m

will set the maximum size of the permanent generation to 128 Mbytes.

So far we've seen a Java.lang.OutOfMemoryError due to exhaustion in the Java heap or an area in the Java heap such as permanent generation. Surprisingly, a Java.lang.OutOfMemoryError can be thrown when the Java Virtual Machine cannot find any more memory in the native memory as well as in the Java heap. How can we tell whether it's caused by the Java heap or native memory?

In the following message, there's no information in the message whether java.lang.OutOfMemoryError is caused by the Java heap or native memory:

JVMDUMP013I Processed dump event "systhrow", detail "java/lang/OutOfMemoryError".

In the following case, the Java virtual machine is kind enough to tell us that there's native memory exhaustion. In the message, the Java virtual machine says "allocateMemory failed" which means a native memory allocation failed:

java.lang.OutOfMemoryError: JVMCI046: allocateMemory failed

In the following message, there's no clue as to whether it's native memory or a Java heap. Fortunately we have a line number, 20, and the source code file name, HeapExhaustionSimulator.java. This might be Java heap related.

JVMDG274: Dump Handler has Processed OutOfMemory.
Exception in thread "main" java.lang.OutOfMemoryError
at HeapExhaustionSimulator.main(HeapExhaustionSimulator.java:20)

In the following message, there's no clue whether it's native memory or a Java heap. But "sun.misc.Unsafe.allocateMemory(Native Method)" indicates that it might be native memory related.

Exception in thread "main" java.lang.OutOfMemoryError
at sun.misc.Unsafe.allocateMemory(Native Method)
at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:99)
at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:288)
at NativeMemorySimulator.main(NativeMemorySimulator.java:11)

In the following message, the  Java Virtual Machine indicates that the Java heap space is related to the java.lang.OutOfMemoryError.

java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid6280.hprof ...
Heap dump file created [50549348 bytes in 1.444 secs]

You may have seen a java.lang.OutOfMemoryError similar to the following:

java.lang.OutOfMemoryError: requested NNN bytes for MMMM. Out of swap space?

Literally you could check the operating system configuration for swap space. It seems that the Java Virtual Machine is not sure if the swap space is the root cause of the problem (?).We can check whether this Java Virtual Machine is consuming too much native memory .We also need to make sure there's enough memory for this JVM and no other processes are consuming most of memory resource. The last thing we can try is to find any known defects related to the module, MMMM.

java.lang.OutOfMemoryError: unable to create new native thread

This kind of message is seen when you have an excessive number of threads or if the native memory is exhausted and a thread is attempting to be created.

What Is a Java Heap Dump?
We've learned that a Java heap is a runtime data area where all class instances and arrays are allocated and shared among all Java Virtual Machine threads during execution of the JVM. A Java heap dump is a snapshot of a Java heap at a specific time. It's like taking a picture of a busy warehouse at a given time. If we look at the picture, we can identify what items were available at that time. Some items may be shipped to Canada a few minutes later, but you can see them in the picture because they were there at the time of the snapshot.

Because the Java specification does not mention the Java heap dump, there are different forms of Java heap dump implementations from different Java Virtual Machines. The IBM Java heap dump provides information mostly about the Java heap.

The Sun Microsystems hprof Java heap dump provides information about the Java Virtual Machine stacks, the runtime constant pool as well as the Java heap.

How Can I Generate Java Heap Dumps?
A Java heap dump is usually automatically generated by the Java Virtual Machine, but you can also force Java heap dump generation. On most IBM Java Virtual Machines, Java heap dumps are generated automatically when the Java heap becomes exhausted. On most Sun Microsystems JVMs, you need to configure the virtual machine to generate Java heap dumps. If you want to generate a Java heap dump when a java.lang.OutOfMemoryError occurs, you need to set the -XX:+HeapDumpOnOutOfMemoryError command-line option on certain releases of Sun's JVM. You could also use a HPROF profiler by using the -agentlib:hprof=heap=dump command-line option. You could also use jmap if your Sun JVM provides the utility. For example, jmap -dump 1234 will generate the Java heap dump from the process whose identifier is 1234. You could utilize JConsole by calling the HotSpotDiagnostic MBean and the dumpHeap operation if it's available from your Sun JVM.

If you want to generate Java heap dumps for Java virtual machine crashes (an unexpected termination of process) or user signals on IBM JVMs, you can set the environment variable IBM_HEAPDUMP or IBM_HEAP_DUMP to TRUE. For example, you can send the IBM Java virtual machine the signal SIGQUIT for the Linux operating systems and AIX operating systems or SIGINT(Control-Break key combination) for Windows to generate Java heap dumps. The IBM JVM provides an API, com.ibm.jvm.Dump.HeapDump(), that you can invoke from application code to generate Java heap dumps programmatically.

Please refer to the documentation of your JVM for detailed information since these options vary by platform and implementation.

Where Can I Find Java Heap Dumps?
You can find Java heap dumps in the current working directory of the Java Virtual Machine process, unless you specify a different location. You can specify the location with the environment variable IBM_HEAPDUMPDIR or _CEE_DMPTARG on IBM JVMs. If there's not enough space available for Java heap dumps or the JVM cannot acquire write-permission in the location, Java heap dumps are generated to the operating system's temporary directory on the IBM JVM. Please refer to your operating system manual for the location of the system's temporary directory and its configuration.

What Do Java Heap Dumps Look Like and How Can I read Them?
Nowadays, the majority of Java heap dump formats are generated in binary. Thus you might want to use a tool unless your brain can interpret hexadecimal codes without any headaches.

The IBM HeapAnalyzer is one of the most popular Java heap analysis tools. It can analyze all Java heap dump formats provided by Sun, HP and most of the Java heap dump formats provided by IBM. It's powered by object query engines and patent-pending heuristic analysis engines. I've been developing the IBM HeapAnalyzer from scratch since 2003, spending my vacation, weekends and weeknights on it. The IBM HeapAnalyzer was so successful that IBM decided to make the IBM HeapAnalyzer an official IBM software product and bundle it with existing products. So I donated all the source code of IBM HeapAnalyzer to IBM to run it on an Eclipse-based interface. Now the IBM HeapAnalyzer has a daughter, MDD4J, which always reminds me of my late daughter lost while I was working on the MDD4J project. The IBM HeapAnalyzer has been the top technology at IBM alphaWorks for six consecutive years since its inception as of March 2009.

Whether your Java heap dump is in binary or text/ascii format, the heap dump contains information about all the live objects that are on the Java heap such as address, object size, and referenced addresses. Let's take a look at the text/ascii format Java heap dumps since binary heap dumps have similar information but are in hexadecimal format to save disk space.

More Stories By Jinwoo Hwang

Jinwoo Hwang is a software engineer, inventor, author, and technical leader at IBM WebSphere Application Server Technical Support in Research Triangle Park, North Carolina. He joined IBM in 1995 and worked with IBM Global Learning Services, IBM Consulting Services, and software development teams prior to his current position at IBM. He is an IBM Certified Solution Developer and IBM Certified WebSphere Application Server System Administrator as well as a SUN Certified Programmer for the Java platform. He is the architect and creator of the following technologies:

Mr. Hwang is the author of the book C Programming for Novices (ISBN:9788985553643, Yonam Press, 1995) as well as the following webcasts and articles:

Mr. Hwang is the author of the following IBM technical articles:

  • VisualAge Performance Guide,1999
  • CORBA distributed object applet/servlet programming for IBM WebSphere Application Server and VisualAge for Java v2.0E ,1999
  • Java CORBA programming for VisualAge for Java ,1998
  • MVS/CICS application programming for VisualAge Generator ,1998
  • Oracle Native/ODBC application programming for VisualAge Generator ,1998
  • MVS/CICS application Web connection programming for VisualAge Generator ,1998
  • Java applet programming for VisualAge WebRunner ,1998
  • VisualAge for Java/WebRunner Server Works Java Servlet Programming Guide ,1998
  • RMI Java Applet programming for VisualAge for Java ,1998
  • Multimedia Database Java Applet Programming Guide ,1997
  • CICS ECI Java Applet programming guide for VisualAge Generator 3.0 ,1997
  • CICS ECI DB2 Application programming guide for VigualGen, 1997
  • VisualGen CICS ECI programming guide, 1997
  • VisualGen CICS DPL programming guide, 1997

Mr. Hwang holds the following patents in the U.S. / other countries:


Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
"At our booth we are showing how to provide trust in the Internet of Things. Trust is where everything starts to become secure and trustworthy. Now with the scaling of the Internet of Things it becomes an interesting question – I've heard numbers from 200 billion devices next year up to a trillion in the next 10 to 15 years," explained Johannes Lintzen, Vice President of Sales at Utimaco, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the technology industry and how do they see opportunities for other women in their area of expertise.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehe...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.