Welcome!

Websphere Authors: Pat Romanski, Elizabeth White, Carmen Gonzalez, Yeshim Deniz, Sanjeev Sharma

Related Topics: Virtualization, Java, XML, SOA & WOA, Open Source, Cloud Expo

Virtualization: Blog Post

The Evolution of Solid State Arrays

Solid state storage continues to evolve

In the first wave of solid-state storage arrays, we saw commodity style SSDs (solid state drives) being added to traditional storage arrays. This solution provided an incremental benefit in performance over spinning hard drives, however the back-end technology in these arrays was developed up to 20 years ago and was purely focused around driving performance out of the slowest part of the infrastructure – the hard drive.  Of course SSDs are an order of magnitude faster than HDDs so you can pretty much guarantee SSDs in traditional arrays results in underused resources, but is premium priced.

Wave 2 of SSD arrays saw the development of custom hardware, mostly still continuing to use commodity SSDs.  At this point we saw full exploitation of the solid state capabilities, with architecture designed to provide the full performance capabilities of solid state drives.  These arrays removed unnecessary or bottlenecking features (like cache) and provided much more back-end scalability.  Within the wave 2 group, Nimbus Data have chosen a hybrid approach and developed their own solid state drives.  This gives them more control over the management functionality of the SSDs and subsequently more control over performance and availability.

Notably, some startup vendors have taken a slightly different approach.  Violin Memory have chosen from day 1 to use custom NAND memory cards called VIMMs (Violin Intelligent Memory Module). This technology removes the need for NAND to emulate a hard drive and for the interface between the processor/memory & persistent memory (e.g. the NAND) to go across a hard drive interface like SAS using the SCSI protocol.  Whilst it could be debated that the savings from removing the disk drive protocol could be marginal, the use of NAND that doesn’t emulate hard drives is about much more than that.  SSD controllers have many features to extend the life of the drive itself.  This includes wear levelling and garbage collection, features that could have a direct impact on device performance.  Custom NAND components can, for instance allow wear levelling to be achieved across the entire array or for individual cell failures to be managed more efficiently.

Building bespoke NAND components isn’t cheap.  Violin have chosen to invest in technology that they believe gives them an advantage in their hardware – no dependency on SSD manufacturers.  The ability to build advanced functionality into their persistent memory means availability can be increased (components don’t need to be swapped out as frequently – failing components can be partially used).

At this point we should do a call out to Texas Memory Systems, recently acquired by IBM.  They have also used custom NAND components; their RamSan-820 uses 500GB flash modules using eMLC memory.

I believe that the third wave will see many more vendors looking to move away from the SSD form factor and building bespoke NAND components as Violin have done.  Currently Violin and TMS have the headstart.  They’ve done the hard work and built the foundation of their platform.  Their future innovations will probably revolve around bigger and faster devices and replacing NAND with whatever is the next generation of persistent memory.

Last week, HDS announced their approach to full flash devices; a new custom-build Flash Module Drive (FMD) that can be added to the VSP platform.  This provides 1.6TB or 3.2TB (higher capacity due March 2013) of storage per module, which can then be stacked into an 8U shelf of 48 FMDs in total – a total of 600TB of flash in a single VSP.  Each FMD is like a traditional SSD drive in terms of height and width, but is much deeper in size.  It appears to the VSP as a traditional SSD.

The FMD chassis is separate to the existing disk chassis that are deployed in the VSP and so FMDs can’t be deployed in conjunction with hard drives.  Although this seems like a negative, the flash modules have higher specification back-end directors (to fully utilise the flash performance), which, in addition to their size, explains why they wouldn’t be mixed together.

Creating a discrete flash module provides Hitachi with a number of benefits compared to individual MLC SSDs including:

  • Higher performance on mixed workloads
  • Inbuilt compression using the onboard custom chips
  • Improved ECC error correction using onboard code and hardware
  • Lower power per TB consumption from higher memory density
  • > 1,000,000 IOPS in a single array

The new FMDs can also be used with HDT (dynamic tiering) to cater for mixed sub-LUN workloads and of course Hitachi’s upgraded microcode is already optimised to work with flash devices.

The Architect’s View
Solid state storage continues to evolve.  NAND flash is fast and has its foibles but this can be overcome with dedicated NAND modules.  Today, only four vendors have moved to dedicated solid-state components while the others continue to use commodity SSDs.  At scale, performance and availability, when viewed in terms of consistency become much more important.  Many vendors today are producing high performance devices, but how well will they scale going forward and how resilient will they be?  As the market matures, these differences will be the dividing line between survival and failure.

Disclaimer: I recently attended the Hitachi Bloggers’ and Influencers’ Days 2012.  My flights and accommodation were covered by Hitachi during the trip, however there is no requirement for me to blog about any of the content presented and I am not compensated in any way for my time when attending the event.  Some materials presented were discussed under NDA and don’t form part of my blog posts, but could influence future discussions.

Related Links

Comments are always welcome; please indicate if you work for a vendor as it’s only fair. If you have any related links of interest, please feel free to add them as a comment for consideration.

Read the original blog entry...

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.