Click here to close now.


IBM Cloud Authors: Pat Romanski, Elizabeth White, SmartBear Blog, Anders Wallgren, Marc Crespi

Related Topics: Containers Expo Blog, Java IoT, Industrial IoT, Microservices Expo, Open Source Cloud, @CloudExpo

Containers Expo Blog: Blog Post

The Evolution of Solid State Arrays

Solid state storage continues to evolve

In the first wave of solid-state storage arrays, we saw commodity style SSDs (solid state drives) being added to traditional storage arrays. This solution provided an incremental benefit in performance over spinning hard drives, however the back-end technology in these arrays was developed up to 20 years ago and was purely focused around driving performance out of the slowest part of the infrastructure – the hard drive.  Of course SSDs are an order of magnitude faster than HDDs so you can pretty much guarantee SSDs in traditional arrays results in underused resources, but is premium priced.

Wave 2 of SSD arrays saw the development of custom hardware, mostly still continuing to use commodity SSDs.  At this point we saw full exploitation of the solid state capabilities, with architecture designed to provide the full performance capabilities of solid state drives.  These arrays removed unnecessary or bottlenecking features (like cache) and provided much more back-end scalability.  Within the wave 2 group, Nimbus Data have chosen a hybrid approach and developed their own solid state drives.  This gives them more control over the management functionality of the SSDs and subsequently more control over performance and availability.

Notably, some startup vendors have taken a slightly different approach.  Violin Memory have chosen from day 1 to use custom NAND memory cards called VIMMs (Violin Intelligent Memory Module). This technology removes the need for NAND to emulate a hard drive and for the interface between the processor/memory & persistent memory (e.g. the NAND) to go across a hard drive interface like SAS using the SCSI protocol.  Whilst it could be debated that the savings from removing the disk drive protocol could be marginal, the use of NAND that doesn’t emulate hard drives is about much more than that.  SSD controllers have many features to extend the life of the drive itself.  This includes wear levelling and garbage collection, features that could have a direct impact on device performance.  Custom NAND components can, for instance allow wear levelling to be achieved across the entire array or for individual cell failures to be managed more efficiently.

Building bespoke NAND components isn’t cheap.  Violin have chosen to invest in technology that they believe gives them an advantage in their hardware – no dependency on SSD manufacturers.  The ability to build advanced functionality into their persistent memory means availability can be increased (components don’t need to be swapped out as frequently – failing components can be partially used).

At this point we should do a call out to Texas Memory Systems, recently acquired by IBM.  They have also used custom NAND components; their RamSan-820 uses 500GB flash modules using eMLC memory.

I believe that the third wave will see many more vendors looking to move away from the SSD form factor and building bespoke NAND components as Violin have done.  Currently Violin and TMS have the headstart.  They’ve done the hard work and built the foundation of their platform.  Their future innovations will probably revolve around bigger and faster devices and replacing NAND with whatever is the next generation of persistent memory.

Last week, HDS announced their approach to full flash devices; a new custom-build Flash Module Drive (FMD) that can be added to the VSP platform.  This provides 1.6TB or 3.2TB (higher capacity due March 2013) of storage per module, which can then be stacked into an 8U shelf of 48 FMDs in total – a total of 600TB of flash in a single VSP.  Each FMD is like a traditional SSD drive in terms of height and width, but is much deeper in size.  It appears to the VSP as a traditional SSD.

The FMD chassis is separate to the existing disk chassis that are deployed in the VSP and so FMDs can’t be deployed in conjunction with hard drives.  Although this seems like a negative, the flash modules have higher specification back-end directors (to fully utilise the flash performance), which, in addition to their size, explains why they wouldn’t be mixed together.

Creating a discrete flash module provides Hitachi with a number of benefits compared to individual MLC SSDs including:

  • Higher performance on mixed workloads
  • Inbuilt compression using the onboard custom chips
  • Improved ECC error correction using onboard code and hardware
  • Lower power per TB consumption from higher memory density
  • > 1,000,000 IOPS in a single array

The new FMDs can also be used with HDT (dynamic tiering) to cater for mixed sub-LUN workloads and of course Hitachi’s upgraded microcode is already optimised to work with flash devices.

The Architect’s View
Solid state storage continues to evolve.  NAND flash is fast and has its foibles but this can be overcome with dedicated NAND modules.  Today, only four vendors have moved to dedicated solid-state components while the others continue to use commodity SSDs.  At scale, performance and availability, when viewed in terms of consistency become much more important.  Many vendors today are producing high performance devices, but how well will they scale going forward and how resilient will they be?  As the market matures, these differences will be the dividing line between survival and failure.

Disclaimer: I recently attended the Hitachi Bloggers’ and Influencers’ Days 2012.  My flights and accommodation were covered by Hitachi during the trip, however there is no requirement for me to blog about any of the content presented and I am not compensated in any way for my time when attending the event.  Some materials presented were discussed under NDA and don’t form part of my blog posts, but could influence future discussions.

Related Links

Comments are always welcome; please indicate if you work for a vendor as it’s only fair. If you have any related links of interest, please feel free to add them as a comment for consideration.

Read the original blog entry...

@ThingsExpo Stories
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
This week, the team assembled in NYC for @Cloud Expo 2015 and @ThingsExpo 2015. For the past four years, this has been a must-attend event for MetraTech. We were happy to once again join industry visionaries, colleagues, customers and even competitors to share and explore the ways in which the Internet of Things (IoT) will impact our industry. Over the course of the show, we discussed the types of challenges we will collectively need to solve to capitalize on the opportunity IoT presents.
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in high-performance, high-efficiency server, storage technology and green computing, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and Embedded Systems worldwide. Supermi...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
WebRTC services have already permeated corporate communications in the form of videoconferencing solutions. However, WebRTC has the potential of going beyond and catalyzing a new class of services providing more than calls with capabilities such as mass-scale real-time media broadcasting, enriched and augmented video, person-to-machine and machine-to-machine communications. In his session at @ThingsExpo, Luis Lopez, CEO of Kurento, will introduce the technologies required for implementing these ideas and some early experiments performed in the Kurento open source software community in areas ...
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.