Welcome!

Websphere Authors: Bill Vorhies, Pat Romanski, Carmen Gonzalez, Elizabeth White, Liz McMillan

News Feed Item

NVIDIA Unveils World's Fastest, Most Efficient Accelerators, Powers World's No. 1 Supercomputer

New Tesla K20X GPU Accelerators Deliver 90 Percent of Performance of Titan, Crowned Fastest Supercomputer Today

SALT LAKE CITY, UT -- (Marketwire) -- 11/12/12 -- SC12 -- NVIDIA today unveiled the NVIDIA® Tesla® K20 family of GPU accelerators, the highest performance, most efficient accelerators ever built, and the technology powering Titan, the world's fastest supercomputer according to the TOP500 list released this morning at the SC12 supercomputing conference.

Armed with 18,688 NVIDIA Tesla K20X GPU accelerators, the Titan supercomputer at Oak Ridge National Laboratory in Oak Ridge, Tenn. seized the No. 1 supercomputer ranking in the world from Lawrence Livermore National Laboratory's Sequoia system with a performance record of 17.59 petaflops as measured by the LINPACK benchmark.(1)

Tesla K20 - Performance, Energy-Efficiency Leadership
Based on the revolutionary NVIDIA Kepler™ compute architecture, the new Tesla K20 family features the Tesla K20X accelerator, the flagship of NVIDIA's Tesla accelerated computing product line.

Providing the highest computing performance ever available in a single processor, the K20X provides tenfold application acceleration when paired with leading CPUs.(2) It surpasses all other processors on two common measures of computational performance -- 3.95 teraflops single-precision and 1.31 teraflops double-precision peak floating point performance.

The new family also includes the Tesla K20 accelerator, which provides 3.52 teraflops of single-precision and 1.17 teraflops of double-precision peak performance. Tesla K20X and K20 GPU accelerators representing more than 30 petaflops of performance have already been delivered in the last 30 days. This is equivalent to the computational performance of last year's 10 fastest supercomputers combined.

"We are taking advantage of NVIDIA GPU architectures to significantly accelerate simulations in such diverse areas as climate and meteorology, seismology, astrophysics, fluid mechanics, materials science, and molecular biophysics," said Dr. Thomas Schulthess, professor of computational physics at ETH Zurich and director of the Swiss National Supercomputing Center. "The K20 family of accelerators represents a leap forward in computing compared to NVIDIA's prior Fermi architecture, enhancing productivity and enabling us potentially to achieve new insights that previously were impossible."

Additional early customers include: Clemson University, Indiana University, Thomas Jefferson National Accelerator Facility (Jefferson Lab), King Abdullah University of Science and Technology (KAUST), National Center for Supercomputing Applications (NCSA), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), University of Southern California (USC), and Shanghai Jiao Tong University (SJTU).

Energy-Efficiency for "Greener" Data Centers
The Tesla K20X GPU accelerator delivers three times higher energy efficiency than previous-generation GPU accelerators and widens the efficiency advantage compared to CPUs.

Using Tesla K20X accelerators, Oak Ridge's Titan achieved 2,142.77 megaflops of performance per watt, which surpasses the energy efficiency of the No. 1 system on the most recent Green500 list of the world's most energy-efficient supercomputers.(3)

Fastest on Broadest Range of Data Center Applications
The Tesla K20 family accelerates the broadest range of scientific, engineering and commercial high performance computing and data center applications. Today, more than 200 software applications take advantage of GPU-acceleration, representing a 60 percent increase in less than a year.

When Tesla K20X GPU accelerators are added to servers with Intel Sandy Bridge CPUs, many applications are accelerated up to 10x or more, including:(4)

  • MATLAB (engineering) - 18.1 times faster
  • Chroma (physics) - 17.9 times faster
  • SPECFEM3D (earth science) - 10.5 times faster
  • AMBER (molecular dynamics) - 8.2 times faster

More information about the Tesla K20 GPU accelerators is available at NVIDIA booth 2217 at SC12, Nov. 12-15, and on the NVIDIA high performance computing website. Users can also try the Tesla K20 accelerator for free on remotely hosted clusters. Visit the GPU Test Drive website for more information.

Availability
The NVIDIA Tesla K20 family of GPU accelerators is shipping today and available for order from leading server manufacturers, including Appro, ASUS, Cray, Eurotech, Fujitsu, HP, IBM, Quanta Computer, SGI, Supermicro, T-Platforms and Tyan, as well as from NVIDIA reseller partners.

About NVIDIA Tesla GPUs
NVIDIA Tesla GPUs are massively parallel accelerators based on the NVIDIA CUDA parallel computing platform and programming model. Tesla GPUs are designed from the ground up for power-efficient, high performance computing, computational science and supercomputing, delivering dramatically higher application acceleration for a range of scientific and commercial applications than a CPU-only approach.

To learn more about CUDA or download the latest version, visit the CUDA website. More NVIDIA news, company and product information, videos, images and other information is available at the NVIDIA newsroom. Follow us on Twitter at @NVIDIATesla.

About NVIDIA
NVIDIA (NASDAQ: NVDA) awakened the world to computer graphics when it invented the GPU in 1999. Today, its processors power a broad range of products from smartphones to supercomputers. NVIDIA's mobile processors are used in cell phones, tablets and auto infotainment systems. PC gamers rely on GPUs to enjoy spectacularly immersive worlds. Professionals use them to create 3D graphics and visual effects in movies and to design everything from golf clubs to jumbo jets. And researchers utilize GPUs to advance the frontiers of science with high performance computing. The company has more than 5,000 patents issued, allowed or filed, including ones covering ideas essential to modern computing. For more information, see www.nvidia.com.

(1) Compared to Sequoia system at Lawrence Livermore National Laboratory in Livermore at 16.3 petaflops of performance; Source: Top500.org - www.top500.org/lists/2012/06.
(2) CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs.
(3) Source: Green500.org: www.green500.org/lists/green201206.
(4) System configuration - CPU results: Dual socket E5-2687w, 3.10 GHz CPUs; GPU results: Dual socket E5-2687w CPUs + 2 Tesla K20X GPUs (MATLAB results running FFT compare one i7-2600K CPU 3.4 GHz vs. Tesla K20 GPU).

Certain statements in this press release including, but not limited to, statements as to: the impact, performance and benefits of NVIDIA Tesla GPUs and the effects of the company's patents on modern computing are forward-looking statements that are subject to risks and uncertainties that could cause results to be materially different than expectations. Important factors that could cause actual results to differ materially include: global economic conditions; our reliance on third parties to manufacture, assemble, package and test our products; the impact of technological development and competition; development of new products and technologies or enhancements to our existing product and technologies; market acceptance of our products or our partners products; design, manufacturing or software defects; changes in consumer preferences or demands; changes in industry standards and interfaces; unexpected loss of performance of our products or technologies when integrated into systems; as well as other factors detailed from time to time in the reports NVIDIA files with the Securities and Exchange Commission, or SEC, including its Form 10-Q for the fiscal period ended July 29, 2012. Copies of reports filed with the SEC are posted on the company's website and are available from NVIDIA without charge. These forward-looking statements are not guarantees of future performance and speak only as of the date hereof, and, except as required by law, NVIDIA disclaims any obligation to update these forward-looking statements to reflect future events or circumstances.

© 2012 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, CUDA and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated. Features, pricing, availability, and specifications are subject to change without notice.

Image Available: http://www2.marketwire.com/mw/frame_mw?attachid=2149554
Image Available: http://www2.marketwire.com/mw/frame_mw?attachid=2149557

Add to Digg Bookmark with del.icio.us Add to Newsvine

For further information, contact:
George Millington
NVIDIA Public Relations
(408) 562-7226
gmillington@nvidia.com

More Stories By Marketwired .

Copyright © 2009 Marketwired. All rights reserved. All the news releases provided by Marketwired are copyrighted. Any forms of copying other than an individual user's personal reference without express written permission is prohibited. Further distribution of these materials is strictly forbidden, including but not limited to, posting, emailing, faxing, archiving in a public database, redistributing via a computer network or in a printed form.

@ThingsExpo Stories
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.