Click here to close now.


IBM Cloud Authors: Jason Bloomberg, Liz McMillan, XebiaLabs Blog, Elizabeth White, Carmen Gonzalez

News Feed Item

Intel Delivers New Architecture for Discovery With Intel® Xeon Phi™ Coprocessors

Marking a new era in high-performance computing, Intel Corporation introduced the Intel® Xeon Phi™ coprocessor, a culmination of years of the research and collaboration, to bring unprecedented performance for innovative breakthroughs in manufacturing, life sciences, energy and other areas. The ability to quickly compute, simulate and make more informed decisions has propelled the growth of high performance computing (HPC) and analytics. This has been driven by global business and research priorities to more accurately predict weather patterns, create more efficient energy resources, and develop cures for diseases among many other pressing issues. With the breakthrough performance per watt and other new attributes of Intel Xeon Phi coprocessor, the industry will have even greater reliability in generating accurate answers, help proliferate high-performance computing beyond laboratories and universities and achieve maximum productivity.

“Intel Xeon Phi coprocessor represents an achievement in Intel innovation that will help propel us to new heights in research and discovery, and reaffirms our commitment to Exascale-level computing,” said Diane Bryant, vice president and general manager of the Datacenter and Connected Systems Group. “The combination of the Intel Xeon processor family and the Intel Xeon Phi coprocessor will change the scope and scale of what highly parallel applications can accomplish, by delivering unprecedented performance, efficiency and programmability. With this technology as a new foundation for HPC, solving real-world challenges from accurately predicting weather patterns 21 days in advance, to developing new cures for diseases will become increasingly possible.”

Based on the Intel® Many Integrated Core (Intel® MIC) architecture, Intel Xeon Phi coprocessors will complement the existing Intel® Xeon® processor E5-2600/4600 product families to deliver unprecedented performance for highly parallel applications. The Intel Xeon processor E5 family is a high-performance computing workhorse that has powered numerous Top500 systems to Petascale performance (1 quadrillion floating point operations per second). Now with Intel Xeon Phi products handling much of the “highly parallel” processing to help supercomputers produce answers for a wide range of scientific and technical disciplines such as genetic research, oil and gas exploration and climate modeling, Intel believes that this powerful combination will help blaze a path to Exascale computing, which would mark a thousand-fold increase in computational capabilities over Petascale.

Saving Time and Resources with World’s Most Popular Programing Model

The Intel Xeon Phi coprocessor takes advantage of familiar programming languages, parallelism models, techniques and developer tools available for the Intel® architecture. This helps ensure that software companies and IT departments are equipped with greater use of parallel code without retraining developers on proprietary and hardware specific programming models associated with accelerators. Intel is providing the software tools to help scientists and engineers optimize their code to take full advantage of Intel Xeon Phi coprocessors, including Intel Parallel Studio XE and Intel Cluster Studio XE. Available today, these tools enable code optimization and, through using the same programming languages and models shared by Intel Xeon Phi coprocessors and Intel Xeon processors E5 product family, help applications benefit both from tens of Intel Xeon Phi coprocessor cores and also from more efficient use of Intel Xeon processor threads.

Introducing Two New Intel Xeon Phi Product Families

Built with Intel’s most advanced 22-nanometer, 3-D tri-gate transistors, Intel is introducing two new Intel Xeon Phi coprocessor families that provide optimal performance and performance-per-watt for highly parallel HPC workloads.

The Intel Xeon Phi coprocessor 3100 family will provide great value for those seeking to run compute-bound workloads such as life science applications and financial simulations. The Intel Xeon Phi 3100 family will offer more than 1000 Gigaflops (1 TFlops) double-precision performance, support for up to 6GB memory at 240GB/sec bandwidth, and a series of reliability features including memory error correction codes (ECC). The family will operate within a 300W thermal design point (TDP) envelope.

The Intel Xeon Phi coprocessor 5110P provides additional performance at a lower power envelope. It reaches 1,011 Gigaflops (1.01 TFlops) double-precision performance, and supports 8GB of GDDR5 memory at a higher 320 GB/sec memory bandwidth. With 225 watts TDP, the passively cooled Intel Xeon Phi coprocessor 5110P delivers power efficiency that is ideal for dense computing environments, and is aimed at capacity-bound workloads such as digital content creation and energy research. This processor has been delivered to early customers and featured in the 40th edition of the Top500 list.

To provide early access to new Intel Xeon Phi coprocessor technology for customers such as Texas Advanced Computing Center (TACC), Intel has additionally offered customized products: Intel Xeon Phi coprocessor SE10X and Intel Xeon Phi coprocessor SE10P. These offer 1073 GFlops double precision performance at a 300W TDP with rest of the specification similar to Intel Xeon Phi coprocessor 5110P.

Broad Industry and Customers Adoption for Intel Xeon Phi coprocessor

More than 50 manufacturers are designing solutions based on the Intel Xeon Phi coprocessors, including Acer, Appro, Asus, Bull, Colfax, Cray, Dell, Eurotech, Fujitsu, Hitachi, HP, IBM, Inspur, NEC, Quanta, SGI, Supermicro and Tyan.

Professor Stephen Hawking and the Cosmos Lab at the University of Cambridge have been given early access to Intel Xeon Phi coprocessor technology for use in their SGI supercomputer. “I am delighted that our new COSMOS supercomputer from SGI contains the latest many-core technology from Intel, the Intel Xeon Phi coprocessors,” said Hawking. “With our powerful and flexible SGI UV2000, we can continue to focus on discovery, leading worldwide efforts to advance the understanding of our universe.”

Majority of Top500 Supercomputers Chose Intel as the Compute Engine

More than 75 percent (379 systems) of the supercomputers on the 40th edition of the Top500 list are powered by Intel processors. Of those systems making their first appearance on the list, Intel-powered systems account for more than 91 percent. The November edition of the list had recorded seven systems based on Intel Xeon Phi coprocessors, including initial deployment of TACC’s “Stampede” system (2.66 PFlops, #7 on the list); “Discover” system at NASA Center for Climate Simulation (417 TFlops, #52); Intel “Endeavour” system (379 TFlops, #57); “MVS-10P” supercomputer at the Joint Supercomputer Center of the Russian Academy of Sciences (375 TFlops, #58) “Maia” system at NASA Ames Research Center (212 TFlops, #117); “SUSU” system at The South Ural State University (146 TFlops, #170); and the “Beacon” supercomputer at The National Institute of Computational Sciences at the University of Tennessee (110 TFlops #253) that is also the most power efficient supercomputer on the list and delivers 2.44 GFlops per watt. The complete report is available at

Pricing and Availability

The Intel Xeon Phi coprocessor 5110P is shipping today with general availability on Jan. 28 with recommended customer price of $2,649. The Intel Xeon Phi coprocessor 3100 product family will be available during the first half of 2013 with recommended customer price below $2,000. Additional information on availability and ordering Intel Xeon Phi coprocessor 5110P can be found at

More information on SC’12 announcement including Diane Bryant’s presentation, additional documents and pictures are available at Intel Newsroom.

About Intel

Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices. Additional information about Intel is available at and

Intel, Intel Xeon and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
* Other names and brands may be claimed as the property of others.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.