Welcome!

Websphere Authors: Yeshim Deniz, Carmen Gonzalez, Sanjeev Sharma, Liz McMillan, Elizabeth White

News Feed Item

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

NEW YORK, Jan. 3, 2013 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

http://www.reportlinker.com/p01078600/A-Magnetic-Moment-Prospects-for-MR...

Current charge-based semiconductor storage technologies such as SRAM, DRAM, NOR flash and NAND flash face scaling challenges as geometries shrink below 20nm. As a result, a marked increase in research activity focused on alternative memory technologies has occurred over the last decade.

Non-charge storage-based memories such as FeRAM and MRAM offer fast RAM-like performance along with non-volatility and extremely high endurance. Although in commercial production, both suffer from high costs vis-à-vis current technologies and have only been able to address niche applications.

All that is likely to change with the availability of samples of in-plane spin-torque transfer MRAM (STT-MRAM) from Avalanche Technology and Everspin Technologies. These achievements are a stepping stone to next generation perpendicular STT-MRAM which promises a scalable path with the potential to broaden its appeal into mainstream consumer applications. As a consequence, the embedded and standalone non-volatile RAM markets are on the cusp of explosive growth in the next few years.

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications offers an independent view of the opportunities and challenges presented by MRAM technology and its potential as one of the leading contenders in the emerging memory space.

Table of Contents

ContentsList of FiguresList of TablesExecutive SummaryMemory OverviewIntroductionThe Memory HierarchySRAMConceptTechnology EvolutionDRAMConceptTechnology EvolutionNOR FlashConceptTechnology EvolutionNAND FlashConceptTechnology EvolutionFerroelectric MemoriesFerroelectric Random Access Memory (FeRAM)Ferroelectric Transistors (FeFET)Phase Change MemoryConceptBasic OperationOther Resistive Switching MemoriesMRAMIntroductionConventional DesignToggle MRAMConceptMaterials for the Toggle-MRAM:Thermal Assisted Switching TAS-MRAMConceptMaterials for the TAS-MRAMSpin-Transfer Torque (STT) MRAMConceptMaterials for the STTThermal Stability and RetentionWrite Margin vs. ReliabilityScalabilityMaterials with Perpendicular Magnetic Anisotropy (PMA)Domain wall (DW) motion MRAMConceptMaterials for the DW-Motion MRAM CellIncreasing the Bit Density With Multi Level Cells (MLC)MLC Based on Single MTJsMLC Based on Parallel Connected MTJsMLC Based on Series Connected MTJsMLC Based on Domain Wall MotionMLC ProgrammingTwo-Step ProgrammingProbabilistic ProgrammingDesign and ArchitectureSTT-MRAM Cell Design1T-1MTJ2T-1MTJShared Source-Line (-Plane)Selection DeviceSensing SchemesData Retention RelaxationRacetrack MemoryMTJ in non-volatile logicIntroductionNon-volatile Latch/Flip-FlopNon-volatile AdderNon-volatile Look-up Table (LUT)Spin-logicMRAM FabricationProcess flowElement shape3D IntegrationMRAM Cost DriversProcess ComplexityCell EfficiencyYieldCost per BitMemory ComparisonMRAM CharacteristicsSwitching TimeCurrent / Power ConsumptionRetention TimeEndurance and Wear LevelingECCScalingMRAM vs. DRAMMRAM vs. FlashMRAM vs. SRAMMRAM vs. FeRAMMRAM vs. PCMRoadmapMRAM StatusAeroflex, Inc.Avalanche TechnologyCrocus TechnologyEverspin Technologies, Inc.Freescale SemiconductorHitachi Ltd.Honeywell International, Inc.IBM Corp.Infineon Technologies AGIntel Corp.Magsil CorporationMicromem Technologies, Inc.Micron TechnologyNEC Corp.NVE Corp.Qualcomm, Inc.Renesas TechnologySamsung ElectronicsSK Hynix SemiconductorSpin Transfer TechnologiesSpingate Technology LLCSPINTECST MicroelectronicsTaiwan Semiconductor Manufacturing CompanyToshiba Corp.Tower Semiconductor Ltd.Market and ApplicationsIntroductionEmbedded MRAM MarketRequirement For Successful eMRAM Market EntryProcessor Companion Devices with Battery-backed SRAM and Real-time ClockSet-top box MCU using EEPROM or Battery-Backed SRAMRF ID Devices, Smartcards, and e-PassportsSmart MetersMobile Baseband SOCsMobile Application Processor SoCsEmbedded nvRAM Market ForecastBB-SRAMFERAMnvSRAMMRAMMarket for nvRAM Product Revenue by TechnologyEmbedded MRAM Market and Applications OutlookStandalone MRAM MarketMemory Market Segmentation Based Upon Price/Bit and Feature Sets DifferentiationMRAM as an SRAM ReplacementMRAM as a Non-volatile RAMRAID Write Index ApplicationSmartMeter Datalog ApplicationOther nvRAM ApplicationsMRAM as a DRAM ReplacementHigh Density DRAM-compatible MRAM ApplicationsInstant-on Embedded Controller MemoryRAID Non-volatile Cache MemoryHDD Non-volatile Buffer MemoryEnterprise SSD Metadata Cache/BufferMobile Chipset MemoryMRAM as a Storage Class MemoryStandalone MRAM Market and Applications SummaryReferencesAbout the AuthorsAbout Forward InsightsServicesContactAbout NamLabContact

List of Figures

Figure 1. Memory HierarchyFigure 2. SRAM Cell SchematicFigure 3. Monolithic 3D SRAM TechnologyFigure 4. DRAM Cell SchematicFigure 5. DRAM Cell Transistor EvolutionFigure 6. DRAM Cell Capacitor TrendFigure 7. NOR Flash Cell (ETOX: EPROM thin oxide cell)Figure 8. NOR ArchitectureFigure 9. NOR Flash CellFigure 10. NOR Flash Technology EvolutionFigure 11. Drain Bias MarginFigure 12. Multi-bit Charge Trapping CellFigure 13. NAND ArchitectureFigure 14. NAND Cell StringFigure 15. NAND Flash Technology EvolutionFigure 16. NAND Flash Memory Gap Fill at 63nm and Flat Memory Cell at 20nmFigure 17. Electrons Stored on the Floating GateFigure 18. Operation of a FeRAM MemoryFigure 19. Ferroelectric Field Effect TransistorFigure 20. Basic PCM Cell Structure and Cell OperationFigure 21. Resistive Switching EffectsFigure 22. MRAM-Cell RequirementsFigure 23. Schematic View of (a) Field-Induced Switching MRAM and (b) STT MRAM.Figure 24. MRAM Operation with Field-Induced SwitchingFigure 25. Switching Field Threshold for Permalloy Magnetic Elements of Different Ends.Figure 26. Program Operation in the Toggle Switching Scheme MRAM DesignFigure 27. Toggle-MRAM Cell with a Select TransistorFigure 28. MTJ Layer Stack and the Uniformity RequirementsFigure 29. Writing Procedure for (a) a Conventional MRAM Cell and (b) TAS MRAM CellFigure 30. MTJ Design for a) Conventional Field Driven Approach and b) TAS ApproachFigure 31. Architecture of a TAS-MRAM Memory ArrayFigure 32. Influence of the Thickness of an IrMn Layer on the Exchange Bias FieldFigure 33. Area Dependency of the Write Power for a TAS-MRAM CellFigure 34. TAS-MRAM Cell Material Stack and Write Power Density vs. Junction AreaFigure 35. Material Stack for a Double Barrier MTJ with one Thermal BarrierFigure 36. Spin Torque Transfer MRAM ConceptFigure 37. Schematic View of a Typical STT Memory Element and TEM Cross-SectionFigure 38. Illustration of the Spin Polarization Enhancement for a Dual Barrier StructureFigure 39. Normalized Switching Current Thresholds vs. Magneto-Resistance RatioFigure 40. STT-MRAM Write Current Scaling for Different MTJ StructuresFigure 41. Required Room Temperature Values for ?HFigure 42. Calculated Single Bit Cycle to Cycle Read Error Rate for three ?I ValuesFigure 43. Measured Critical Switching Voltage and Break Down Voltage DistributionsFigure 44. Switching Probability vs. Switching Pulse WidthFigure 45. BER Curves Showing a Bifurcated Switching,Figure 46. Planar MTJ Scaling: Thickness and Switching Current Density vs. Cell WidthFigure 47. Comparison of (a) In-Plane STT-MRAM and (b) Perpendicular STT-MRAM.Figure 48. Illustration of Perpendicular STT-MRAM DesignFigure 49. Scaling of Critical Switching Current for In-Plane and Perpend. MTJ ElementsFigure 50. Possible Cell Structure and Operation Principle of the DW-Motion MRAM CellFigure 51. DW-Motion Cell Structure a) and Cross-Sectional TEM Image b)Figure 52. DW-Motion Velocity in a Co/Ni Nano-Laminate Free LayerFigure 53. MLC in Single MTJs - Calculated TMR RatioFigure 54. Schematic Illustration of MLC-MTJFigure 55. MLC STT-MRAM Cell with Series Connected MTJsFigure 56. Stacked MTJ Cell Fabrication and Bit Cost ScalingFigure 57. MLC with Field Compensation LayerFigure 58. Schematic Representation of MLC Cell Based on Domain Wall MotionFigure 59. State Transition Graphs of Write SchemesFigure 60. Probabilistic ProgrammingFigure 61. 1T-1MTJ STT-MRAM StructureFigure 62. 2T1MTJ Structure and LayoutFigure 63. Shared SourceLine: a) Schematic and b) LayoutFigure 64. MTJ Current Scaling Compared to the Current Scaling of Select DevicesFigure 65. Non-Destructive Self-Reference Sensing Scheme:Figure 66. Comparison of Different MTJ Designs at 350K:Figure 67. Magnetic Racetrack Memory – a 3D Shift RegisterFigure 68. The Circuit Diagram of Non-volatile Latch Fabricated by NECFigure 69. The Circuit Diagram of Non-volatile Latch Designed by STMicroelectonicsFigure 70. Non-volatile Adder Fabricated by Hitachi.Figure 71. Non-volatile Lookup-Table Fabricated by HitcathiFigure 72. Schematic of Programmable Spin-LogicFigure 73. MRAM Sputtering Cluster ToolsFigure 74. Schematic Cross Sectional View of an MRAM Module in the Back End Of LineFigure 75. SEM Cross Section of CMOS Chip with Back End Of Line MTJ MRAMFigure 76. Top view of MTJ, TEM Cross-Section and Key Process Flow of STT-MRAMFigure 77. Cross Section of 4Mb MRAM Product and Top-View of the Tunnel JunctionFigure 78. Trade-Off Between Operating Time and Writing Current of the STT-MTJFigure 79. Operation of the Proposed Lookback SchemeFigure 80. Block Diagram of a Cache With Lookback SchemeFigure 81. Minimum ? (Thermal Stability) Required to Get a 10 Year MTTF.Figure 82. The Dual-ECC Memory Architecture with Intrinsic and Extrinsic ECCs.Figure 83. Cell Size TrendFigure 84. Memory Density TrendFigure 85. MRAM Papers Presented at VLSI Symposium and IEDMFigure 86. Everspin 64Mb ST-MRAM Die PhotoFigure 87. 54nm STT-MRAMFigure 88. OST-MRAM vs. Conventional MRAMFigure 89. Spingate's Roadmap and Target MarketFigure 90. Re-write Current Density and MR RatioFigure 91. 30-Nanometer Diameter MTJFigure 92. Crocus-TowerJazz TAS- MRAMFigure 93. Device CharacteristicsFigure 94. eFlash and NOR Flash Memory MarketFigure 95. MRAM as Converged Embedded MemoryFigure 96. Toggle Mode MRAM Uses Higher Write Power to Generate Magnetic FieldsFigure 97. Spin Torque MRAM Directly Switches MTJ Using Current Through CellFigure 98. Cubic Corporation GoCard used eFERAM RF ID ChipFigure 99. Processor with Hybrid Cache MemoryFigure 100. Market for Embedded nvRAM Products by TechnologyFigure 101. Embedded MRAM Value by Application SegmentFigure 102. Standalone Memory MarketFigure 103. Memory Price per MB TrendsFigure 104. Volatile Memory PyramidFigure 105. Non-volatile Memory PyramidFigure 106. SRAM MarketFigure 107. Battery-Backed SRAM and nvSRAMFigure 108. RAID Disk Controller Showing RAID Write Journal and Cache MemoriesFigure 109. Comparison of HDD Recording MethodsFigure 110. Buffalo's SSD with MRAM cacheFigure 111. Concept of Storage Class MemoryFigure 113. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesFigure 114. nvRAM Market ForecastFigure 115. Standalone MRAM Market by Application Segment

List of Tables

Table 1. Comparison of In-Plane and Perpendicular MTJTable 2. Comparison of Conventional CMOS Adder and the Non-volatile AdderTable 3. Estimated Process Complexity for a STT-MRAM ManufacturingTable 4. Relative Cost Estimation for STT-MRAM Compared to DRAM and NAND FlashTable 5. Memory ComparisonTable 6. Embedded Memory RoadmapTable 7. Standalone Memory RoadmapTable 8. Spingate's ps-MRAM vs. Other Memory TechnologiesTable 9. Key Parameters for eNVM ApplicationsTable 10. Market for Embedded nvRAM Products by TechnologyTable 11. Embedded MRAM Technology and Applications RoadmapTable 12. Embedded MRAM Revenue and Units by ApplicationTable 13. Standalone MRAM Technology, Density and Applications RoadmapTable 14. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesTable 15. Detailed MRAM Forecast (Revenue & Units)

To order this report:Electronic_Component_and_Semiconductor Industry: A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

Nicolas Bombourg

Reportlinker

Email: nicolasbombourg@reportlinker.com

US: (805)652-2626

Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the real benefits to focus on, how to understand the requirements of a successful solution, the flow of ...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

Focused on this fast-growing market’s needs, Vitesse Semiconductor Corporation (Nasdaq: VTSS), a leading provider of IC solutions to advance "Ethernet Everywhere" in Carrier, Enterprise and Internet of Things (IoT) networks, introduced its IStaX™ software (VSC6815SDK), a robust protocol stack to simplify deployment and management of Industrial-IoT network applications such as Industrial Ethernet switching, surveillance, video distribution, LCD signage, intelligent sensors, and metering equipment. Leveraging technologies proven in the Carrier and Enterprise markets, IStaX is designed to work ac...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
C-Labs LLC, a leading provider of remote and mobile access for the Internet of Things (IoT), announced the appointment of John Traynor to the position of chief operating officer. Previously a strategic advisor to the firm, Mr. Traynor will now oversee sales, marketing, finance, and operations. Mr. Traynor is based out of the C-Labs office in Redmond, Washington. He reports to Chris Muench, Chief Executive Officer. Mr. Traynor brings valuable business leadership and technology industry expertise to C-Labs. With over 30 years' experience in the high-tech sector, John Traynor has held numerous...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
SYS-CON Events announced today that IDenticard will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. IDenticard™ is the security division of Brady Corp (NYSE: BRC), a $1.5 billion manufacturer of identification products. We have small-company values with the strength and stability of a major corporation. IDenticard offers local sales, support and service to our customers across the United States and Canada. Our partner network encompasses some 300 of the world's leading systems integrators and security s...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world. The next @ThingsExpo will take place November 4-6, 2014, at the Santa Clara Convention Center, in Santa Clara, California. Since its launch in 2008, Cloud Expo TV commercials have been aired and CNBC, Fox News Network, and Bloomberg TV. Please enjoy our 2014 commercial.
From a software development perspective IoT is about programming "things," about connecting them with each other or integrating them with existing applications. In his session at @ThingsExpo, Yakov Fain, co-founder of Farata Systems and SuranceBay, will show you how small IoT-enabled devices from multiple manufacturers can be integrated into the workflow of an enterprise application. This is a practical demo of building a framework and components in HTML/Java/Mobile technologies to serve as a platform that can integrate new devices as they become available on the market.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Located in booth #314, the Bsquare team will present DataV demos and discuss how DataV will help customers put their data to work to improve business outcomes. DataV is unlocking new initiatives across a wide landscape of customers in industries such as industrial manufacturing, transportation, retail and mobile. The solution is designed to complement a new project start or help to enrich an existing machine investment.
The Physical Web incorporates beacons that can be put in any small retail store, for example, so that every store now has "an app" for its customers. In this Birds-of-a-Feather session at Internet of @ThingsExpo, Scott Jenson, Product Designer at Google, will discuss the Physical Web and how it is an open standard so any device can broadcast a URL wirelessly, so any phone/tablet/watch nearby can see, and rank those devices. When the user taps on one, they just go to that web page. It's really that simple. It's about thinking small, enabling micro-information (what is in my prescription bottle...
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.