Click here to close now.

Welcome!

IBM Cloud Authors: XebiaLabs Blog, Liz McMillan, Elizabeth White, Pat Romanski, Yeshim Deniz

News Feed Item

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

NEW YORK, Jan. 3, 2013 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

http://www.reportlinker.com/p01078600/A-Magnetic-Moment-Prospects-for-MR...

Current charge-based semiconductor storage technologies such as SRAM, DRAM, NOR flash and NAND flash face scaling challenges as geometries shrink below 20nm. As a result, a marked increase in research activity focused on alternative memory technologies has occurred over the last decade.

Non-charge storage-based memories such as FeRAM and MRAM offer fast RAM-like performance along with non-volatility and extremely high endurance. Although in commercial production, both suffer from high costs vis-à-vis current technologies and have only been able to address niche applications.

All that is likely to change with the availability of samples of in-plane spin-torque transfer MRAM (STT-MRAM) from Avalanche Technology and Everspin Technologies. These achievements are a stepping stone to next generation perpendicular STT-MRAM which promises a scalable path with the potential to broaden its appeal into mainstream consumer applications. As a consequence, the embedded and standalone non-volatile RAM markets are on the cusp of explosive growth in the next few years.

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications offers an independent view of the opportunities and challenges presented by MRAM technology and its potential as one of the leading contenders in the emerging memory space.

Table of Contents

ContentsList of FiguresList of TablesExecutive SummaryMemory OverviewIntroductionThe Memory HierarchySRAMConceptTechnology EvolutionDRAMConceptTechnology EvolutionNOR FlashConceptTechnology EvolutionNAND FlashConceptTechnology EvolutionFerroelectric MemoriesFerroelectric Random Access Memory (FeRAM)Ferroelectric Transistors (FeFET)Phase Change MemoryConceptBasic OperationOther Resistive Switching MemoriesMRAMIntroductionConventional DesignToggle MRAMConceptMaterials for the Toggle-MRAM:Thermal Assisted Switching TAS-MRAMConceptMaterials for the TAS-MRAMSpin-Transfer Torque (STT) MRAMConceptMaterials for the STTThermal Stability and RetentionWrite Margin vs. ReliabilityScalabilityMaterials with Perpendicular Magnetic Anisotropy (PMA)Domain wall (DW) motion MRAMConceptMaterials for the DW-Motion MRAM CellIncreasing the Bit Density With Multi Level Cells (MLC)MLC Based on Single MTJsMLC Based on Parallel Connected MTJsMLC Based on Series Connected MTJsMLC Based on Domain Wall MotionMLC ProgrammingTwo-Step ProgrammingProbabilistic ProgrammingDesign and ArchitectureSTT-MRAM Cell Design1T-1MTJ2T-1MTJShared Source-Line (-Plane)Selection DeviceSensing SchemesData Retention RelaxationRacetrack MemoryMTJ in non-volatile logicIntroductionNon-volatile Latch/Flip-FlopNon-volatile AdderNon-volatile Look-up Table (LUT)Spin-logicMRAM FabricationProcess flowElement shape3D IntegrationMRAM Cost DriversProcess ComplexityCell EfficiencyYieldCost per BitMemory ComparisonMRAM CharacteristicsSwitching TimeCurrent / Power ConsumptionRetention TimeEndurance and Wear LevelingECCScalingMRAM vs. DRAMMRAM vs. FlashMRAM vs. SRAMMRAM vs. FeRAMMRAM vs. PCMRoadmapMRAM StatusAeroflex, Inc.Avalanche TechnologyCrocus TechnologyEverspin Technologies, Inc.Freescale SemiconductorHitachi Ltd.Honeywell International, Inc.IBM Corp.Infineon Technologies AGIntel Corp.Magsil CorporationMicromem Technologies, Inc.Micron TechnologyNEC Corp.NVE Corp.Qualcomm, Inc.Renesas TechnologySamsung ElectronicsSK Hynix SemiconductorSpin Transfer TechnologiesSpingate Technology LLCSPINTECST MicroelectronicsTaiwan Semiconductor Manufacturing CompanyToshiba Corp.Tower Semiconductor Ltd.Market and ApplicationsIntroductionEmbedded MRAM MarketRequirement For Successful eMRAM Market EntryProcessor Companion Devices with Battery-backed SRAM and Real-time ClockSet-top box MCU using EEPROM or Battery-Backed SRAMRF ID Devices, Smartcards, and e-PassportsSmart MetersMobile Baseband SOCsMobile Application Processor SoCsEmbedded nvRAM Market ForecastBB-SRAMFERAMnvSRAMMRAMMarket for nvRAM Product Revenue by TechnologyEmbedded MRAM Market and Applications OutlookStandalone MRAM MarketMemory Market Segmentation Based Upon Price/Bit and Feature Sets DifferentiationMRAM as an SRAM ReplacementMRAM as a Non-volatile RAMRAID Write Index ApplicationSmartMeter Datalog ApplicationOther nvRAM ApplicationsMRAM as a DRAM ReplacementHigh Density DRAM-compatible MRAM ApplicationsInstant-on Embedded Controller MemoryRAID Non-volatile Cache MemoryHDD Non-volatile Buffer MemoryEnterprise SSD Metadata Cache/BufferMobile Chipset MemoryMRAM as a Storage Class MemoryStandalone MRAM Market and Applications SummaryReferencesAbout the AuthorsAbout Forward InsightsServicesContactAbout NamLabContact

List of Figures

Figure 1. Memory HierarchyFigure 2. SRAM Cell SchematicFigure 3. Monolithic 3D SRAM TechnologyFigure 4. DRAM Cell SchematicFigure 5. DRAM Cell Transistor EvolutionFigure 6. DRAM Cell Capacitor TrendFigure 7. NOR Flash Cell (ETOX: EPROM thin oxide cell)Figure 8. NOR ArchitectureFigure 9. NOR Flash CellFigure 10. NOR Flash Technology EvolutionFigure 11. Drain Bias MarginFigure 12. Multi-bit Charge Trapping CellFigure 13. NAND ArchitectureFigure 14. NAND Cell StringFigure 15. NAND Flash Technology EvolutionFigure 16. NAND Flash Memory Gap Fill at 63nm and Flat Memory Cell at 20nmFigure 17. Electrons Stored on the Floating GateFigure 18. Operation of a FeRAM MemoryFigure 19. Ferroelectric Field Effect TransistorFigure 20. Basic PCM Cell Structure and Cell OperationFigure 21. Resistive Switching EffectsFigure 22. MRAM-Cell RequirementsFigure 23. Schematic View of (a) Field-Induced Switching MRAM and (b) STT MRAM.Figure 24. MRAM Operation with Field-Induced SwitchingFigure 25. Switching Field Threshold for Permalloy Magnetic Elements of Different Ends.Figure 26. Program Operation in the Toggle Switching Scheme MRAM DesignFigure 27. Toggle-MRAM Cell with a Select TransistorFigure 28. MTJ Layer Stack and the Uniformity RequirementsFigure 29. Writing Procedure for (a) a Conventional MRAM Cell and (b) TAS MRAM CellFigure 30. MTJ Design for a) Conventional Field Driven Approach and b) TAS ApproachFigure 31. Architecture of a TAS-MRAM Memory ArrayFigure 32. Influence of the Thickness of an IrMn Layer on the Exchange Bias FieldFigure 33. Area Dependency of the Write Power for a TAS-MRAM CellFigure 34. TAS-MRAM Cell Material Stack and Write Power Density vs. Junction AreaFigure 35. Material Stack for a Double Barrier MTJ with one Thermal BarrierFigure 36. Spin Torque Transfer MRAM ConceptFigure 37. Schematic View of a Typical STT Memory Element and TEM Cross-SectionFigure 38. Illustration of the Spin Polarization Enhancement for a Dual Barrier StructureFigure 39. Normalized Switching Current Thresholds vs. Magneto-Resistance RatioFigure 40. STT-MRAM Write Current Scaling for Different MTJ StructuresFigure 41. Required Room Temperature Values for ?HFigure 42. Calculated Single Bit Cycle to Cycle Read Error Rate for three ?I ValuesFigure 43. Measured Critical Switching Voltage and Break Down Voltage DistributionsFigure 44. Switching Probability vs. Switching Pulse WidthFigure 45. BER Curves Showing a Bifurcated Switching,Figure 46. Planar MTJ Scaling: Thickness and Switching Current Density vs. Cell WidthFigure 47. Comparison of (a) In-Plane STT-MRAM and (b) Perpendicular STT-MRAM.Figure 48. Illustration of Perpendicular STT-MRAM DesignFigure 49. Scaling of Critical Switching Current for In-Plane and Perpend. MTJ ElementsFigure 50. Possible Cell Structure and Operation Principle of the DW-Motion MRAM CellFigure 51. DW-Motion Cell Structure a) and Cross-Sectional TEM Image b)Figure 52. DW-Motion Velocity in a Co/Ni Nano-Laminate Free LayerFigure 53. MLC in Single MTJs - Calculated TMR RatioFigure 54. Schematic Illustration of MLC-MTJFigure 55. MLC STT-MRAM Cell with Series Connected MTJsFigure 56. Stacked MTJ Cell Fabrication and Bit Cost ScalingFigure 57. MLC with Field Compensation LayerFigure 58. Schematic Representation of MLC Cell Based on Domain Wall MotionFigure 59. State Transition Graphs of Write SchemesFigure 60. Probabilistic ProgrammingFigure 61. 1T-1MTJ STT-MRAM StructureFigure 62. 2T1MTJ Structure and LayoutFigure 63. Shared SourceLine: a) Schematic and b) LayoutFigure 64. MTJ Current Scaling Compared to the Current Scaling of Select DevicesFigure 65. Non-Destructive Self-Reference Sensing Scheme:Figure 66. Comparison of Different MTJ Designs at 350K:Figure 67. Magnetic Racetrack Memory – a 3D Shift RegisterFigure 68. The Circuit Diagram of Non-volatile Latch Fabricated by NECFigure 69. The Circuit Diagram of Non-volatile Latch Designed by STMicroelectonicsFigure 70. Non-volatile Adder Fabricated by Hitachi.Figure 71. Non-volatile Lookup-Table Fabricated by HitcathiFigure 72. Schematic of Programmable Spin-LogicFigure 73. MRAM Sputtering Cluster ToolsFigure 74. Schematic Cross Sectional View of an MRAM Module in the Back End Of LineFigure 75. SEM Cross Section of CMOS Chip with Back End Of Line MTJ MRAMFigure 76. Top view of MTJ, TEM Cross-Section and Key Process Flow of STT-MRAMFigure 77. Cross Section of 4Mb MRAM Product and Top-View of the Tunnel JunctionFigure 78. Trade-Off Between Operating Time and Writing Current of the STT-MTJFigure 79. Operation of the Proposed Lookback SchemeFigure 80. Block Diagram of a Cache With Lookback SchemeFigure 81. Minimum ? (Thermal Stability) Required to Get a 10 Year MTTF.Figure 82. The Dual-ECC Memory Architecture with Intrinsic and Extrinsic ECCs.Figure 83. Cell Size TrendFigure 84. Memory Density TrendFigure 85. MRAM Papers Presented at VLSI Symposium and IEDMFigure 86. Everspin 64Mb ST-MRAM Die PhotoFigure 87. 54nm STT-MRAMFigure 88. OST-MRAM vs. Conventional MRAMFigure 89. Spingate's Roadmap and Target MarketFigure 90. Re-write Current Density and MR RatioFigure 91. 30-Nanometer Diameter MTJFigure 92. Crocus-TowerJazz TAS- MRAMFigure 93. Device CharacteristicsFigure 94. eFlash and NOR Flash Memory MarketFigure 95. MRAM as Converged Embedded MemoryFigure 96. Toggle Mode MRAM Uses Higher Write Power to Generate Magnetic FieldsFigure 97. Spin Torque MRAM Directly Switches MTJ Using Current Through CellFigure 98. Cubic Corporation GoCard used eFERAM RF ID ChipFigure 99. Processor with Hybrid Cache MemoryFigure 100. Market for Embedded nvRAM Products by TechnologyFigure 101. Embedded MRAM Value by Application SegmentFigure 102. Standalone Memory MarketFigure 103. Memory Price per MB TrendsFigure 104. Volatile Memory PyramidFigure 105. Non-volatile Memory PyramidFigure 106. SRAM MarketFigure 107. Battery-Backed SRAM and nvSRAMFigure 108. RAID Disk Controller Showing RAID Write Journal and Cache MemoriesFigure 109. Comparison of HDD Recording MethodsFigure 110. Buffalo's SSD with MRAM cacheFigure 111. Concept of Storage Class MemoryFigure 113. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesFigure 114. nvRAM Market ForecastFigure 115. Standalone MRAM Market by Application Segment

List of Tables

Table 1. Comparison of In-Plane and Perpendicular MTJTable 2. Comparison of Conventional CMOS Adder and the Non-volatile AdderTable 3. Estimated Process Complexity for a STT-MRAM ManufacturingTable 4. Relative Cost Estimation for STT-MRAM Compared to DRAM and NAND FlashTable 5. Memory ComparisonTable 6. Embedded Memory RoadmapTable 7. Standalone Memory RoadmapTable 8. Spingate's ps-MRAM vs. Other Memory TechnologiesTable 9. Key Parameters for eNVM ApplicationsTable 10. Market for Embedded nvRAM Products by TechnologyTable 11. Embedded MRAM Technology and Applications RoadmapTable 12. Embedded MRAM Revenue and Units by ApplicationTable 13. Standalone MRAM Technology, Density and Applications RoadmapTable 14. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesTable 15. Detailed MRAM Forecast (Revenue & Units)

To order this report:Electronic_Component_and_Semiconductor Industry: A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

Nicolas Bombourg

Reportlinker

Email: nicolasbombourg@reportlinker.com

US: (805)652-2626

Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The basic integration architecture, as defined by ESBs, hasn’t changed for more than a decade. Most cloud integration providers still rely on an ESB architecture and their proprietary connectors. As a result, enterprise integration projects suffer from constraints of availability and reliability of these connectors that are not re-usable across other integration vendors. However, the rapid adoption of APIs and almost ubiquitous availability of APIs amongst most SaaS and Cloud applications are rapidly redefining traditional integration approaches and their reliance on proprietary connectors. ...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context wi...
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of robomq.io, and Fred Yatzeck, principal architect leading product development at robomq.io, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
"We have a tagline - "Power in the API Economy." What that means is everything that is built in applications and connected applications is done through APIs," explained Roberto Medrano, Executive Vice President at Akana, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
To many people, IoT is a buzzword whose value is not understood. Many people think IoT is all about wearables and home automation. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed some incredible game-changing use cases and how they are transforming industries like agriculture, manufacturing, health care, and smart cities. He will discuss cool technologies like smart dust, robotics, smart labels, and much more. Prepare to be blown away with a glimpse of the future.
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fillin...
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, discussed IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sectors.
In his keynote at 16th Cloud Expo, Rodney Rogers, CEO of Virtustream, discussed the evolution of the company from inception to its recent acquisition by EMC – including personal insights, lessons learned (and some WTF moments) along the way. Learn how Virtustream’s unique approach of combining the economics and elasticity of the consumer cloud model with proper performance, application automation and security into a platform became a breakout success with enterprise customers and a natural fit for the EMC Federation.
SYS-CON Events announced today that the "Second Containers & Microservices Conference" will take place November 3-5, 2015, at the Santa Clara Convention Center, Santa Clara, CA, and the “Third Containers & Microservices Conference” will take place June 7-9, 2016, at Javits Center in New York City. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.