Click here to close now.


Websphere Authors: Baruch Sadogursky, Elizabeth White, Pat Romanski, Yeshim Deniz, AppDynamics Blog

News Feed Item

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

NEW YORK, Jan. 3, 2013 /PRNewswire/ -- announces that a new market research report is available in its catalogue:

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

Current charge-based semiconductor storage technologies such as SRAM, DRAM, NOR flash and NAND flash face scaling challenges as geometries shrink below 20nm. As a result, a marked increase in research activity focused on alternative memory technologies has occurred over the last decade.

Non-charge storage-based memories such as FeRAM and MRAM offer fast RAM-like performance along with non-volatility and extremely high endurance. Although in commercial production, both suffer from high costs vis-à-vis current technologies and have only been able to address niche applications.

All that is likely to change with the availability of samples of in-plane spin-torque transfer MRAM (STT-MRAM) from Avalanche Technology and Everspin Technologies. These achievements are a stepping stone to next generation perpendicular STT-MRAM which promises a scalable path with the potential to broaden its appeal into mainstream consumer applications. As a consequence, the embedded and standalone non-volatile RAM markets are on the cusp of explosive growth in the next few years.

A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications offers an independent view of the opportunities and challenges presented by MRAM technology and its potential as one of the leading contenders in the emerging memory space.

Table of Contents

ContentsList of FiguresList of TablesExecutive SummaryMemory OverviewIntroductionThe Memory HierarchySRAMConceptTechnology EvolutionDRAMConceptTechnology EvolutionNOR FlashConceptTechnology EvolutionNAND FlashConceptTechnology EvolutionFerroelectric MemoriesFerroelectric Random Access Memory (FeRAM)Ferroelectric Transistors (FeFET)Phase Change MemoryConceptBasic OperationOther Resistive Switching MemoriesMRAMIntroductionConventional DesignToggle MRAMConceptMaterials for the Toggle-MRAM:Thermal Assisted Switching TAS-MRAMConceptMaterials for the TAS-MRAMSpin-Transfer Torque (STT) MRAMConceptMaterials for the STTThermal Stability and RetentionWrite Margin vs. ReliabilityScalabilityMaterials with Perpendicular Magnetic Anisotropy (PMA)Domain wall (DW) motion MRAMConceptMaterials for the DW-Motion MRAM CellIncreasing the Bit Density With Multi Level Cells (MLC)MLC Based on Single MTJsMLC Based on Parallel Connected MTJsMLC Based on Series Connected MTJsMLC Based on Domain Wall MotionMLC ProgrammingTwo-Step ProgrammingProbabilistic ProgrammingDesign and ArchitectureSTT-MRAM Cell Design1T-1MTJ2T-1MTJShared Source-Line (-Plane)Selection DeviceSensing SchemesData Retention RelaxationRacetrack MemoryMTJ in non-volatile logicIntroductionNon-volatile Latch/Flip-FlopNon-volatile AdderNon-volatile Look-up Table (LUT)Spin-logicMRAM FabricationProcess flowElement shape3D IntegrationMRAM Cost DriversProcess ComplexityCell EfficiencyYieldCost per BitMemory ComparisonMRAM CharacteristicsSwitching TimeCurrent / Power ConsumptionRetention TimeEndurance and Wear LevelingECCScalingMRAM vs. DRAMMRAM vs. FlashMRAM vs. SRAMMRAM vs. FeRAMMRAM vs. PCMRoadmapMRAM StatusAeroflex, Inc.Avalanche TechnologyCrocus TechnologyEverspin Technologies, Inc.Freescale SemiconductorHitachi Ltd.Honeywell International, Inc.IBM Corp.Infineon Technologies AGIntel Corp.Magsil CorporationMicromem Technologies, Inc.Micron TechnologyNEC Corp.NVE Corp.Qualcomm, Inc.Renesas TechnologySamsung ElectronicsSK Hynix SemiconductorSpin Transfer TechnologiesSpingate Technology LLCSPINTECST MicroelectronicsTaiwan Semiconductor Manufacturing CompanyToshiba Corp.Tower Semiconductor Ltd.Market and ApplicationsIntroductionEmbedded MRAM MarketRequirement For Successful eMRAM Market EntryProcessor Companion Devices with Battery-backed SRAM and Real-time ClockSet-top box MCU using EEPROM or Battery-Backed SRAMRF ID Devices, Smartcards, and e-PassportsSmart MetersMobile Baseband SOCsMobile Application Processor SoCsEmbedded nvRAM Market ForecastBB-SRAMFERAMnvSRAMMRAMMarket for nvRAM Product Revenue by TechnologyEmbedded MRAM Market and Applications OutlookStandalone MRAM MarketMemory Market Segmentation Based Upon Price/Bit and Feature Sets DifferentiationMRAM as an SRAM ReplacementMRAM as a Non-volatile RAMRAID Write Index ApplicationSmartMeter Datalog ApplicationOther nvRAM ApplicationsMRAM as a DRAM ReplacementHigh Density DRAM-compatible MRAM ApplicationsInstant-on Embedded Controller MemoryRAID Non-volatile Cache MemoryHDD Non-volatile Buffer MemoryEnterprise SSD Metadata Cache/BufferMobile Chipset MemoryMRAM as a Storage Class MemoryStandalone MRAM Market and Applications SummaryReferencesAbout the AuthorsAbout Forward InsightsServicesContactAbout NamLabContact

List of Figures

Figure 1. Memory HierarchyFigure 2. SRAM Cell SchematicFigure 3. Monolithic 3D SRAM TechnologyFigure 4. DRAM Cell SchematicFigure 5. DRAM Cell Transistor EvolutionFigure 6. DRAM Cell Capacitor TrendFigure 7. NOR Flash Cell (ETOX: EPROM thin oxide cell)Figure 8. NOR ArchitectureFigure 9. NOR Flash CellFigure 10. NOR Flash Technology EvolutionFigure 11. Drain Bias MarginFigure 12. Multi-bit Charge Trapping CellFigure 13. NAND ArchitectureFigure 14. NAND Cell StringFigure 15. NAND Flash Technology EvolutionFigure 16. NAND Flash Memory Gap Fill at 63nm and Flat Memory Cell at 20nmFigure 17. Electrons Stored on the Floating GateFigure 18. Operation of a FeRAM MemoryFigure 19. Ferroelectric Field Effect TransistorFigure 20. Basic PCM Cell Structure and Cell OperationFigure 21. Resistive Switching EffectsFigure 22. MRAM-Cell RequirementsFigure 23. Schematic View of (a) Field-Induced Switching MRAM and (b) STT MRAM.Figure 24. MRAM Operation with Field-Induced SwitchingFigure 25. Switching Field Threshold for Permalloy Magnetic Elements of Different Ends.Figure 26. Program Operation in the Toggle Switching Scheme MRAM DesignFigure 27. Toggle-MRAM Cell with a Select TransistorFigure 28. MTJ Layer Stack and the Uniformity RequirementsFigure 29. Writing Procedure for (a) a Conventional MRAM Cell and (b) TAS MRAM CellFigure 30. MTJ Design for a) Conventional Field Driven Approach and b) TAS ApproachFigure 31. Architecture of a TAS-MRAM Memory ArrayFigure 32. Influence of the Thickness of an IrMn Layer on the Exchange Bias FieldFigure 33. Area Dependency of the Write Power for a TAS-MRAM CellFigure 34. TAS-MRAM Cell Material Stack and Write Power Density vs. Junction AreaFigure 35. Material Stack for a Double Barrier MTJ with one Thermal BarrierFigure 36. Spin Torque Transfer MRAM ConceptFigure 37. Schematic View of a Typical STT Memory Element and TEM Cross-SectionFigure 38. Illustration of the Spin Polarization Enhancement for a Dual Barrier StructureFigure 39. Normalized Switching Current Thresholds vs. Magneto-Resistance RatioFigure 40. STT-MRAM Write Current Scaling for Different MTJ StructuresFigure 41. Required Room Temperature Values for ?HFigure 42. Calculated Single Bit Cycle to Cycle Read Error Rate for three ?I ValuesFigure 43. Measured Critical Switching Voltage and Break Down Voltage DistributionsFigure 44. Switching Probability vs. Switching Pulse WidthFigure 45. BER Curves Showing a Bifurcated Switching,Figure 46. Planar MTJ Scaling: Thickness and Switching Current Density vs. Cell WidthFigure 47. Comparison of (a) In-Plane STT-MRAM and (b) Perpendicular STT-MRAM.Figure 48. Illustration of Perpendicular STT-MRAM DesignFigure 49. Scaling of Critical Switching Current for In-Plane and Perpend. MTJ ElementsFigure 50. Possible Cell Structure and Operation Principle of the DW-Motion MRAM CellFigure 51. DW-Motion Cell Structure a) and Cross-Sectional TEM Image b)Figure 52. DW-Motion Velocity in a Co/Ni Nano-Laminate Free LayerFigure 53. MLC in Single MTJs - Calculated TMR RatioFigure 54. Schematic Illustration of MLC-MTJFigure 55. MLC STT-MRAM Cell with Series Connected MTJsFigure 56. Stacked MTJ Cell Fabrication and Bit Cost ScalingFigure 57. MLC with Field Compensation LayerFigure 58. Schematic Representation of MLC Cell Based on Domain Wall MotionFigure 59. State Transition Graphs of Write SchemesFigure 60. Probabilistic ProgrammingFigure 61. 1T-1MTJ STT-MRAM StructureFigure 62. 2T1MTJ Structure and LayoutFigure 63. Shared SourceLine: a) Schematic and b) LayoutFigure 64. MTJ Current Scaling Compared to the Current Scaling of Select DevicesFigure 65. Non-Destructive Self-Reference Sensing Scheme:Figure 66. Comparison of Different MTJ Designs at 350K:Figure 67. Magnetic Racetrack Memory – a 3D Shift RegisterFigure 68. The Circuit Diagram of Non-volatile Latch Fabricated by NECFigure 69. The Circuit Diagram of Non-volatile Latch Designed by STMicroelectonicsFigure 70. Non-volatile Adder Fabricated by Hitachi.Figure 71. Non-volatile Lookup-Table Fabricated by HitcathiFigure 72. Schematic of Programmable Spin-LogicFigure 73. MRAM Sputtering Cluster ToolsFigure 74. Schematic Cross Sectional View of an MRAM Module in the Back End Of LineFigure 75. SEM Cross Section of CMOS Chip with Back End Of Line MTJ MRAMFigure 76. Top view of MTJ, TEM Cross-Section and Key Process Flow of STT-MRAMFigure 77. Cross Section of 4Mb MRAM Product and Top-View of the Tunnel JunctionFigure 78. Trade-Off Between Operating Time and Writing Current of the STT-MTJFigure 79. Operation of the Proposed Lookback SchemeFigure 80. Block Diagram of a Cache With Lookback SchemeFigure 81. Minimum ? (Thermal Stability) Required to Get a 10 Year MTTF.Figure 82. The Dual-ECC Memory Architecture with Intrinsic and Extrinsic ECCs.Figure 83. Cell Size TrendFigure 84. Memory Density TrendFigure 85. MRAM Papers Presented at VLSI Symposium and IEDMFigure 86. Everspin 64Mb ST-MRAM Die PhotoFigure 87. 54nm STT-MRAMFigure 88. OST-MRAM vs. Conventional MRAMFigure 89. Spingate's Roadmap and Target MarketFigure 90. Re-write Current Density and MR RatioFigure 91. 30-Nanometer Diameter MTJFigure 92. Crocus-TowerJazz TAS- MRAMFigure 93. Device CharacteristicsFigure 94. eFlash and NOR Flash Memory MarketFigure 95. MRAM as Converged Embedded MemoryFigure 96. Toggle Mode MRAM Uses Higher Write Power to Generate Magnetic FieldsFigure 97. Spin Torque MRAM Directly Switches MTJ Using Current Through CellFigure 98. Cubic Corporation GoCard used eFERAM RF ID ChipFigure 99. Processor with Hybrid Cache MemoryFigure 100. Market for Embedded nvRAM Products by TechnologyFigure 101. Embedded MRAM Value by Application SegmentFigure 102. Standalone Memory MarketFigure 103. Memory Price per MB TrendsFigure 104. Volatile Memory PyramidFigure 105. Non-volatile Memory PyramidFigure 106. SRAM MarketFigure 107. Battery-Backed SRAM and nvSRAMFigure 108. RAID Disk Controller Showing RAID Write Journal and Cache MemoriesFigure 109. Comparison of HDD Recording MethodsFigure 110. Buffalo's SSD with MRAM cacheFigure 111. Concept of Storage Class MemoryFigure 113. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesFigure 114. nvRAM Market ForecastFigure 115. Standalone MRAM Market by Application Segment

List of Tables

Table 1. Comparison of In-Plane and Perpendicular MTJTable 2. Comparison of Conventional CMOS Adder and the Non-volatile AdderTable 3. Estimated Process Complexity for a STT-MRAM ManufacturingTable 4. Relative Cost Estimation for STT-MRAM Compared to DRAM and NAND FlashTable 5. Memory ComparisonTable 6. Embedded Memory RoadmapTable 7. Standalone Memory RoadmapTable 8. Spingate's ps-MRAM vs. Other Memory TechnologiesTable 9. Key Parameters for eNVM ApplicationsTable 10. Market for Embedded nvRAM Products by TechnologyTable 11. Embedded MRAM Technology and Applications RoadmapTable 12. Embedded MRAM Revenue and Units by ApplicationTable 13. Standalone MRAM Technology, Density and Applications RoadmapTable 14. Price per Megabyte Trend of Conventional and Emerging Memory TechnologiesTable 15. Detailed MRAM Forecast (Revenue & Units)

To order this report:Electronic_Component_and_Semiconductor Industry: A Magnetic Moment: Prospects for MRAM Technology, Markets and Applications

Nicolas Bombourg



US: (805)652-2626

Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, will discuss IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sector...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehe...
SYS-CON Events announced today that the "First Containers & Microservices Conference" will take place June 9-11, 2015, at the Javits Center in New York City. The “Second Containers & Microservices Conference” will take place November 3-5, 2015, at Santa Clara Convention Center, Santa Clara, CA. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
Cloud is not a commodity. And no matter what you call it, computing doesn’t come out of the sky. It comes from physical hardware inside brick and mortar facilities connected by hundreds of miles of networking cable. And no two clouds are built the same way. SoftLayer gives you the highest performing cloud infrastructure available. One platform that takes data centers around the world that are full of the widest range of cloud computing options, and then integrates and automates everything. Join SoftLayer on June 9 at 16th Cloud Expo to learn about IBM Cloud's SoftLayer platform, explore se...