Welcome!

IBM Cloud Authors: Scott Allen, Pat Romanski, Yeshim Deniz, Liz McMillan, Elizabeth White

Blog Feed Post

Deja VVVu: Others Claiming Gartner’s Construct for Big Data

By

This article originally appeared on the Gartner Blog Network in January 2012 and is reprinted here with permission from Gartner and its author Doug Laney

In the late 1990s, while a META Group analyst (Note: META is now part of Gartner), it was becoming evident that our clients increasingly were encumbered by their data assets.  While many pundits were talking about, many clients were lamenting, and many vendors were seizing the opportunity of these fast-growing data stores, I also realized that something else was going on. Sea changes in the speed at which data was flowing mainly due to electronic commerce, along with the increasing breadth of data sources, structures and formats due to the post Y2K-ERP application boom were as or more challenging to data management teams than was the increasing quantity of data.

In an attempt to help our clients get a handle on how to recognize, and more importantly, deal with these challenges I began first speaking at industry conferences on this 3-dimensional data challenge of increasing data volume, velocity and variety.  Then in late 2000 I drafted a research note published in February 2001 entitled 3-D Data Management: Controlling Data Volume, Velocity and Variety.

Fast forward to today:  The “3V’s” framework for understanding and dealing with Big Data has now become ubiquitous.  In fact, other research firms, major vendors and consulting firms have even posited the 3Vs (or an unmistakable variant) as their own concept.  Since the original piece is no longer available in Gartner archives but is in increasing demand, I wanted to make it available here for anyone to reference and cite:

Original Research Note PDF: 3-D Data Management: Controlling Data Volume, Velocity and Variety

Date: 6 February 2001     Author: Doug Laney

3-D Data Management: Controlling Data Volume, Velocity and Variety. Current business conditions and mediums are pushing traditional data management principles to their limits, giving rise to novel and more formalized approaches.

META Trend: During 2001/02, leading enterprises will increasingly use a centralized data warehouse to define a common business vocabulary that improves internal and external collaboration. Through 2003/04, data quality and integration woes will be tempered by data profiling technologies (for generating metadata, consolidated schemas, and integration logic) and information logistics agents. By 2005/06, data, document, and knowledge management will coalesce, driven by schema-agnostic indexing strategies and portal maturity.

The effect of the e-commerce surge, a rise in merger & acquisition activity, increased collaboration, and the drive for harnessing information as a competitive catalyst is driving enterprises to higher levels of consciousness about how data is managed at its most basic level.  In 2001-02, historical, integrated databases (e.g. data warehouses, operational data stores, data marts), will be leveraged not only for intended analytical purposes, but increasingly for intra-enterprise consistency and coordination. By 2003-04, these structures (including their associated metadata) will be on par with application portfolios, organization charts and procedure manuals for defining a business to its employees and affiliates.

Data records, data structures, and definitions commonly accepted throughout an enterprise reduce fiefdoms pulling against each other due to differences in the way each perceives where the enterprise has been, is presently, and is headed.  Readily accessible current and historical records of transactions, affiliates (partners, employees, customers, suppliers), business processes (or rules), along with definitional and navigational metadata (see ADS Delta 896, 21st Century Metadata: Mapping the Enterprise Genome, 7 Aug 2000) enable employees to paddle in the same direction.  Conversely, application-specific data stores (e.g. accounts receivable versus order status), geographic-specific data stores (e.g. North American sales vs. International sales), offer conflicting, or insular views of the enterprise, that while important for feeding transactional systems, provide no “single version of the truth,” giving rise to inconsistency in the way enterprise factions function.

While enterprises struggle to consolidate systems and collapse redundant databases to enable greater operational, analytical, and collaborative consistencies, changing economic conditions have made this job more difficult.  E-commerce, in particular, has exploded data management challenges along three dimensions: volumes, velocity and variety.  In 2001/02, IT organizations must compile a variety of approaches to have at their disposal for dealing with each.

Data Volume

E-commerce channels increase the depth and breadth of data available about a transaction (or any point of interaction). The lower cost of e-channels enables and enterprise to offer its goods or services to more individuals or trading partners, and up to 10x the quantity of data about an individual transaction may be collected—thereby increasing the overall volume of data to be managed.  Furthermore, as enterprises come to see information as a tangible asset, they become reluctant to discard it.

Typically, increases in data volume are handled by purchasing additional online storage.  However as data volume increases, the relative value of each data point decreases proportionately—resulting in a poor financial justification for merely incrementing online storage. Viable alternates and supplements to hanging new disk include:

  • Implementing tiered storage systems (see SIS Delta 860, 19 Apr 2000) that cost effectively balance levels of data utility with data availability using a variety of media.
  • Limiting data collected to that which will be leveraged by current or imminent business processes
  • Limiting certain analytic structures to a percentage of statistically valid sample data.
  • Profiling data sources to identify and subsequently eliminate redundancies
  • Monitoring data usage to determine “cold spots” of unused data that can be eliminated or offloaded to tape (e.g. Ambeo, BEZ Systems, Teleran)
  • Outsourcing data management altogether (e.g. EDS, IBM)

Data Velocity

E-commerce has also increased point-of-interaction (POI) speed, and consequently the pace data used to support interactions and generated by interactions. As POI performance is increasingly perceived as a competitive differentiator (e.g. Web site response, inventory availability analysis, transaction execution, order tracking update, product/service delivery, etc.) so too is an organization’s ability to manage data velocity.  Recognizing that data velocity management is much more than a physical bandwidth and protocol issue, enterprises are implementing architectural solutions such as:

  • Operational data stores (ODSs) that periodically extract, integrate and re-organize production data for operational inquiry or tactical analysis
  • Caches that provide instant access to transaction data while buffering back-end systems from additional load and performance degradation. (Unlike ODSs, caches are updated according to adaptive business rules and have schemas that mimic the back-end source.)
  • Point-to-point (P2P) data routing between databases and applications (e.g. D2K, DataMirror) that circumvents high-latency hub-and-spoke models that are more appropriate for strategic analysis
  • Designing architectures that balance data latency with application data requirements and decision cycles, without assuming the entire information supply chain must be near real-time.

Data Variety

Through 2003/04, no greater barrier to effective data management will exist than the variety of incompatible data formats, non-aligned data structures, and inconsistent data semantics.  By this time, interchange and translation mechanisms will be built into most DBMSs. But until then, application portfolio sprawl (particularly when based on a “strategy” of autonomous software implementations due to e-commerce solution immaturity), increased partnerships, and M&A activity intensifies data variety challenges. Attempts to resolve data variety issues must be approached as an ongoing endeavor encompassing the following techniques:

  • Data profiling (e.g. Data Mentors, Metagenix) to discover hidden relationships and resolve inconsistencies across multiple data sources (see ADS898)
  • XML-based data format “universal translators” that import data into standard XML documents for export into another data format (e.g. infoShark, XML Solutions)
  • Enterprise application integration (EAI) predefined adapters (e.g. NEON, Tibco, Mercator) for acquiring and delivering data between known applications via message queues, or EAI development kits for building custom adapters.
  • Data access middleware (e.g. Information Builders’ EDA/SQL, SAS Access, OLE DB, ODBC) for direct connectivity between applications and databases
  • Distributed query management (DQM) software (e.g. Enth, InfoRay, Metagon) that adds a data routing and integration intelligence layer above “dumb” data access middleware
  • Metadata management solutions (i.e. repositories and schema standards) to capture and make available definitional metadata that can help provide contextual consistency to enterprise data
  • Advanced indexing techniques for relating (if not physically integrating) data of various incompatible types (e.g. multimedia, documents, structured data, business rules).

As with any sufficiently fashionable technology, users should expect the data management market place ebb-and-flow to yield solutions that consolidate multiple techniques and solutions that are increasingly application/environment specific. (See Figure 1 – Data Management Solutions) In selecting a technique or technology, enterprises should first perform an information audit assessing the status of their information supply chain to identify and prioritize particular data management issues.

Business Impact: Attention to data management, particularly in a climate of e-commerce and greater need for collaboration, can enable enterprises to achieve greater returns on their information assets.

Bottom Line: In 2001/02, IT organizations must look beyond traditional direct brute force physical approaches to data management.  Through 2003/04, practices for resolving e-commerce accelerated data volume, velocity and variety issues will become more formalized and diverse.  Increasingly, these techniques involve trade-offs and architectural solutions that involve and impact application portfolios and business strategy decisions.

###

Over the past decade, Gartner analysts including Regina Casonato, Anne Lapkin, Mark A. Beyer, Yvonne Genovese and Ted Friedman have continued to expand our research on this topic, identifying and refining other “big data” concepts. In September 2011 they published the tremendous research note Information Management in the 21st Century.  And in 2012, Mark Beyer and I developed and published Gartner’s updated definition of Big Data to reflect its value proposition and requirements for “new innovative forms of processing.” (See The Importance of ‘Big Data’: A Definition)

Doug Laney is a research vice president for Gartner Research, where he covers business analytics solutions and projects, information management, and data-governance-related issues. He is considered a pioneer in the field of data warehousing and created the first commercial project methodology for business intelligence/data warehouse projects. Mr. Laney is also originated the discipline of information economics (infonomics). 

Follow Doug on Twitter: @Doug_Laney

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder and partner at Cognitio Corp and publsher of CTOvision.com

@ThingsExpo Stories
Connected devices and the industrial internet are growing exponentially every year with Cisco expecting 50 billion devices to be in operation by 2020. In this period of growth, location-based insights are becoming invaluable to many businesses as they adopt new connected technologies. Knowing when and where these devices connect from is critical for a number of scenarios in supply chain management, disaster management, emergency response, M2M, location marketing and more. In his session at @Th...
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
When people aren’t talking about VMs and containers, they’re talking about serverless architecture. Serverless is about no maintenance. It means you are not worried about low-level infrastructural and operational details. An event-driven serverless platform is a great use case for IoT. In his session at @ThingsExpo, Animesh Singh, an STSM and Lead for IBM Cloud Platform and Infrastructure, will detail how to build a distributed serverless, polyglot, microservices framework using open source tec...
Apixio Inc. has raised $19.3 million in Series D venture capital funding led by SSM Partners with participation from First Analysis, Bain Capital Ventures and Apixio’s largest angel investor. Apixio will dedicate the proceeds toward advancing and scaling products powered by its cognitive computing platform, further enabling insights for optimal patient care. The Series D funding comes as Apixio experiences strong momentum and increasing demand for its HCC Profiler solution, which mines unstruc...
IoT offers a value of almost $4 trillion to the manufacturing industry through platforms that can improve margins, optimize operations & drive high performance work teams. By using IoT technologies as a foundation, manufacturing customers are integrating worker safety with manufacturing systems, driving deep collaboration and utilizing analytics to exponentially increased per-unit margins. However, as Benoit Lheureux, the VP for Research at Gartner points out, “IoT project implementers often ...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his Day 2 Keynote at @ThingsExpo, Henrik Kenani Dahlgren, Portfolio Marketing Manager at Ericsson, discussed how to plan to cooperate, partner, and form lasting all-star teams to change t...
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
Presidio has received the 2015 EMC Partner Services Quality Award from EMC Corporation for achieving outstanding service excellence and customer satisfaction as measured by the EMC Partner Services Quality (PSQ) program. Presidio was also honored as the 2015 EMC Americas Marketing Excellence Partner of the Year and 2015 Mid-Market East Partner of the Year. The EMC PSQ program is a project-specific survey program designed for partners with Service Partner designations to solicit customer feedbac...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...