Welcome!

IBM Cloud Authors: Elizabeth White, William Schmarzo, Don MacVittie, Pat Romanski, Liz McMillan

News Feed Item

Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

NEW YORK, Jan. 22, 2013 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

http://www.reportlinker.com/p01084201/Solid-State-Thin-Film-Battery-Mark...

Batteries are changing. Solid state batteries permit units to be miniaturized, standalone, and portable. Solid-state batteries have advantages in power and density: low-power draw and high-energy density. They have limitations in that there is difficulty getting high currents across solid–solid interfaces.

Power delivery is different in solid state thin film batteries, – there is more power per given weight. The very small and very thin size of solid state batteries helps to reduce the physical size of the sensor or device using the battery. Units can stay in the field longer. Solid state batteries can store harvested energy. When combined with energy harvesting solid state batteries can make a device stay in the field almost indefinitely, last longer, power sensors better.

Temperature is a factor with batteries. The solid state batteries work in a very broad range of temperatures, making them able to be used for ruggedized applications. Solid state batteries are ecofriendly. Compared with traditional batteries, solid state thin film batteries are less toxic to the environment.

Development trends are pointing toward integration and miniaturization. Many technologies have progressed down the curve, but traditional batteries have not kept pace. The technology adoption of solid state batteries has implications to the chip grid. One key implication is a drive to integrate intelligent rechargeable energy storage into the chip grid. In order to achieve this requirement, a new product technology has been embraced: Solid state rechargeable energy storage devices are far more useful than non-rechargeable devices.

Thin film battery market driving forces include creating business inflection by delivering technology that supports entirely new capabilities. Sensor networks are creating demand for thin film solid state devices. Vendors doubled revenue and almost tripled production volume from first quarter. Multiple customers are moving into production with innovative products after successful trials.

A solid state battery electrolyte is a solid, not porous liquid. The solid is denser than liquid, contributing to the higher energy density. Charging is complex. In an energy-harvesting application, where the discharge is only a little and then there is a trickle back up, the number of recharge cycles goes way up. The cycles increase by the inverse of the depth of discharge. Long shelf life is a benefit of being a solid state battery. The fact that the battery housing does not need to deal with gases and vapors as a part of the charging/discharging process is another advantage.

According to IBM, the world continues to get "smaller" and "flatter." Being connected holds new potential: the planet is becoming smarter because sensors let us manage the environment. Intelligence is being infused into the way the world works.

Sensor networks are being built as sensors are integrated into the systems, processes and infrastructure that comprise surroundings. These sensor networks enable physical goods to be developed, manufactured, bought and sold with more controls than were ever available before.

That sensor network allows services to be delivered. Sensors facilitate the movement of everything from money and oil to water and electrons in a controlled environment. That is positioned to help millions of people work and live in a middleclass lifestyle.

How is this possible? The world is becoming interconnected. The world is becoming instrumented. Sensors are being embedded everywhere: in cars, appliances, cameras, roads, pipelines. Sensors work in medicine and livestock management.

Systems and objects can "speak" to each other in machine to machine networks. Think of a trillion connected and intelligent things, and the oceans of data they will produce, this is the future.

Nanostructured or nano-enabled batteries are a new generation of lithium-ion batteries and battery systems to serve applications and markets. Nano-enabled batteries employ technology at the nano-scale, a scale of minuscule particles that measure less than 100 nanometers, or 100x10-9 meters.

Traditional lithium-ion (Li-Ion) technology uses active materials, such as lithium cobalt-oxide or lithium iron phosphate, with particles that range in size between 5 and 20 micrometers. Nano-engineering improves many of the failings of present battery technology. Re-charging time and battery memory are important aspects of nano-structures. Researching battery micro- and nanostructure is a whole new approach that is only just beginning to be explored.

Industrial production of nano batteries requires production of the electrode coatings in large batches so that large numbers of cells can be produced from the same material. Manufacturers using nano materials in their chemistry had to develop unique mixing and handling technologies.

The efficiency and power output of each transducer varies according to transducer design, construction, material, operating temperature, as well as the input power available and the impedance matching at the transducer output.

Cymbet millimeter scale solid state battery applications are evolving. In the case of the Intra-Ocular Pressure Monitor, it is desirable to place microelectronic systems in very small spaces. Advances in ultra-low power Integrated Circuits, MEMS sensors and Solid State Batteries are making these systems a reality. Miniature wireless sensors, data loggers and computers can be embedded in hundreds of applications and millions of locations.

Various power factors have impinged on the advancement and development of micro devices. Power density, cell weight, battery life and form factor all have proven significant and cumbersome when considered for micro applications. Markets for solid state thin-film batteries at $65.9 million in 2012 are anticipated to reach $5.95 billion by 2019. Market growth is a result of the implementation of a connected world of sensors.

Table of Contents

Solid State Battery Executive Summary

SOLID STATE THIN FILM BATTERY EXECUTIVE SUMMARY ES-1

Advantages of Solid State Batteries ES-1

Solid State Thin Film Battery Market Driving Forces ES-3

Improvements In Wireless Sensor Technologies Have Opened

Up New Solid State Battery Markets ES-5

Nanotechnology and Solid State Batteries ES-5

Solid State Battery Market Shares ES-6

Solid State Thin-Film Battery (TFB) Market Forecasts ES-8

Solid State Battery Market Description and Market Dynamics

1. SOLID STATE THIN FILM BATTERY

MARKET DESCRIPTION AND MARKET DYNAMICS 1-1

1.1 World Economy Undergoing A Transformation 1-1

1.1.1 Global Economic Conditions: 1-2

1.1.2 Global Economy Becomes Steadily More Sluggish 1-3

1.1.3 Global Economic Conditions Impact Markets 1-5

1.2 Smarter Computing Depends on Solid State Thin Film Batteries 1-7

1.2.1 Intelligent Systems: The Next Era of IT Leverages

Solid State

Thin Film Batteries 1-8

1.2.2 Cloud and Virtualization from IBM WebSphere 1-10

1.3 Solid State Thin Film Battery Target Markets 1-11

1.3.1 Permanent Power for Wireless Sensors 1-12

1.4 Principal Features Used To Compare Rechargeable Batteries 1-13

1.5 Integrated Energy Storage 1-14

1.5.1 Pervasive Power 1-16

1.6 Reducing Grid Energy Losses 1-16

Solid State Battery Market Shares and Market Forecasts

2. SOLID STATE THIN FILM BATTERY MARKET SHARES AND MARKET FORECASTS 2-1

2.1 Advantages of Solid State Batteries 2-1

2.1.1 Solid State Thin Film Battery Market Driving Forces 2-3

2.1.2 Improvements In Wireless Sensor Technologies

Have Opened Up New Solid State Battery Markets 2-5

2.1.3 Nanotechnology and Solid State Batteries 2-5

2.2 Solid State Battery Market Shares 2-6

2.2.1 Cymbet 2-9

2.2.2 Cymbet EnerChip 2-10

2.2.3 Infinite Power Solutions (IPS) THINERGY 2-10

2.2.4 Solid State Thin Film Battery Market Leader Analysis 2-11

2.3 Solid State Thin-Film Battery (TFB) Market Forecasts 2-12

2.3.1 Solid State Battery Market Forecast Analysis 2-14

2.3.2 IBM Smarter Planet 2-23

2.4 Applications for Solid State Thin Film Battery Battery 2-25

2.4.1 Cymbet Millimeter Scale Applications 2-29

2.4.2 Cymbet Ultra Low Power Management Applications 2-30

2.4.3 Solid State Thin Film Battery Market Segment Analysis 2-31

2.4.4 Embedded Systems Need Solid State Batteries 2-35

2.4.5 Energy Harvesting 2-36

2.4.6 Near Field Communication (NFC) Transactions 2-38

2.5 Battery Market 2-39

2.6 Wireless Sensor Market 2-42

2.6.1 Benefits Of Energy Harvesting 2-43

2.6.2 Solid-State Battery Advantages 2-44

2.6.3 Comparison of Battery Performances 2-46

2.7 Solid State Thin Film Battery Price and Installed Base Analysis 2-47

2.8 Solid State Thin Film Battery Regional Analysis 2-49

Solid State Battery Product Description

3. SOLID STATE THIN FILM BATTERY PRODUCT DESCRIPTION 3-1

3.1 Cymbet Solid State Batteries (SSB) 3-1

3.1.1 Cymbet Solid State Batteries (SSB) Eco-Friendly Features 3-1

3.1.2 Cymbet EnerChip Bare Die Solid State Batteries are

Verified Non-cytotoxic 3-2

3.1.3 Cymbet EnerChip Solid State Battery Fabrication 3-3

3.1.4 Cymbet Embedded Energy Concepts For Micro-

Power Chip Design 3-3

3.1.5 Cymbet Embedded Energy Silicon Substrate Architecture 3-4

3.1.6 Cymbet Pervasive Power Architecture 3-5

3.1.7 Cymbet Cross Power Grid Similarities and Point of

Load Power Management 3-7

3.1.8 Cymbet Solid State Rechargeable Energy Storage Devices 3-10

3.1.9 Cymbet Integrated Energy Storage for Point of Load

Power Delivery 3-12

3.1.10 Cymbet Energy Processors and Solid State Batteries 3-15

3.1.11 Cymbet Millimeter Scale 3-16

3.1.12 Cymbet Millimeter Scale Energy Harvesting EH

Powered Sensors 3-18

3.1.13 Cymbet Building Millimeter Scale EH-based Computers 3-22

3.1.14 Cymbet Designing and Deploying Millimeter Scale Sensors 3-24

3.1.15 Cymbet Permanent Power Using Solid State

Rechargeable Batteries 3-24

3.1.16 Cymbet Ultra Low Power Management 3-25

3.1.17 Cymbet EH Wireless Sensor Components 3-26

3.2 Infinite Power Solutions 3-28

3.2.1 Infinite Power Solutions THINERGY MECs from IPS 3-30

3.2.2 Infinite Power Solutions (IPS) THINERGY MEC225 Device: 3-31

3.2.3 Infinite Power Solutions (IPS) THINERGY MEC220 3-32

3.2.4 Infinite Power Solutions (IPS) THINERGY MEC201 3-35

3.2.5 Infinite Power Solutions (IPS) Thinergy® MEC202 3-36

3.2.6 Infinite Power Solutions (IPS) Recharging THINERGY

Micro-Energy Cells 3-49

3.2.7 Infinite Power Solutions (IPS) THINERGY Charging Methods 3-49

3.2.8 Infinite Power Solutions (IPS) Battery Technology For

Smart Phones 3-51

3.2.9 Infinite Power Solutions (IPS) High-Capacity Cells for

Smart Phones 3-52

3.2.10 Infinite Power Solutions (IPS) 4v Solid-State Battery

Ceramic Technology With Energy Density >1,000wh/L 3-52

3.2.11 Infinite Power Solutions (IPS) All-Solid-State HEC Technology 3-54

3.3 Excelatron 3-55

3.3.1 Excelatron Current State of the Art For Thin Film Batteries 3-55

3.3.2 High Temperature Performance of Excellatron Thin

Film Batteries 3-57

3.3.3 Excelatron Solid State Battery Long Cycle Life 3-63

3.3.4 Excelatron Discharge Capacities & Profiles 3-65

3.3.5 Excellatron Polymer Film Substrate for Thin Flexible Profile 3-66

3.3.6 Excelatron High Power & Energy Density, Specific

Power & Energy 3-68

3.3.7 Excellatron High Rate Capability 3-69

3.3.8 Excellatron High Capacity Thin Film Batteries 3-70

3.4 NEC 3-73

3.4.1 Toyota 3-74

Solid State Battery Technology

4. SOLID STATE THIN FILM BATTERY TECHNOLOGY 4-1

4.1 Technologies For Manufacture Of Solid State Thin Film Batteries 4-1

4.2 Cymbet EnerChip™ Solid State Battery Charges 10 Chips

Connected In Parallel 4-1

4.2.1 Cymbet EnerChip Provides Drop-in Solar Energy Harvesting 4-5

4.2.2 Cymbet Wireless Building Automation 4-7

4.2.3 Cymbet Solutions: Industry transition to low power IC chips 4-8

4.2.4 Cymbet Manufacturing Sites 4-10

4.2.5 Cymbet Energy Harvesting Evaluation Kit 4-11

4.2.6 EnerChip Products are RoHS Compliant 4-12

4.2.7 Cymbet Safe to Transport Aboard Aircraft 4-13

4.3 Infinite Power Solutions (IPS) Ceramics 4-17

4.3.1 Infinite Power Solutions (IPS) Lithium Cobalt

Oxide (LiCoO2) Cathode and a Li-Metal Anode Technology 4-18

4.3.2 Infinite Power Solutions Technology Uses Lithium 4-24

4.3.3 IPS Thin, Flexible Battery Smaller Than A Backstage Laminate 4-25

4.3.4 IPS Higher-Density Solid-State Battery Technology 4-26

4.4 NEC Technology For Lithium-Ion Batteries 4-27

4.4.1 NEC Using Nickel In Replacement Of A Material 4-27

4.4.2 NEC Changed The Solvent Of The Electrolyte Solution 4-28

4.5 Air Batteries: Lithium Ions Convert Oxygen Into Lithium Peroxide 4-30

4.6 Nanotechnology and Solid State Thin Film Batteries 4-30

4.6.1 MIT Solid State Thin Film Battery Research 4-32

4.6.2 ORNL Scientists Reveal Battery Behavior At The Nanoscale 4-36

4.6.3 Rice University and Lockheed Martin Scientists

Discovered Way To Use Silicon To Increase Capacity Of

Lithium-Ion Batteries 4-41

4.6.4 Rice University50 Microns Battery 4-43

4.6.5 Next Generation Of Specialized Nanotechnology 4-44

4.6.6 Nanotechnology 4-45

4.6.7 Components Of A Battery 4-45

4.6.8 Impact Of Nanotechnology 4-49

4.6.9 Nanotechnology Engineering Method 4-49

4.6.10 Why Gold Nanoparticles Are More Precious Than Pretty Gold 4-51

4.6.11 Silicon Nanoplate Strategy For Batteries 4-55

4.6.12 Graphene Electrodes Developed for Supercapacitors 4-58

4.6.13 Nanoscale Materials for High Performance Batteries 4-60

4.7 John Bates Patent: Thin Film Battery and Method for Making Same 4-61

4.7.1 J. B. Bates,a N. J. Dudney, B. Neudecker, A. Ueda, and

C. D. Evans Thin-Film Lithium and Lithium-Ion Batteries 4-62

4.8 MEMS Applications 4-64

4.8.1 MEMS Pressure Sensors 4-64

4.9 c-Si Manufacturing Developments 4-66

4.9.1 Wafers 4-66

4.9.2 Texturization 4-66

4.9.3 Emitter Formation 4-66

4.9.4 Metallization 4-67

4.9.5 Automation, Statistical Process Control (SPC),

Advanced Process Control (APC) 4-68

4.9.6 Achieving Well-controlled Processes 4-68

4.9.7 Incremental Improvements 4-69

4.10 Transition Metal Oxides, MnO 4-70

4.11 Battery Cell Construction 4-73

4.11.1 Lithium Ion Cells Optimized For Capacity 4-74

4.11.2 Flat Plate Electrodes 4-75

4.11.3 Spiral Wound Electrodes 4-75

4.11.4 Multiple Electrode Cells 4-76

4.11.5 Fuel Cell Bipolar Configuration 4-76

4.11.6 Electrode Interconnections 4-77

4.11.7 Sealed Cells and Recombinant Cells 4-77

4.11.8 Battery Cell Casing 4-78

4.11.9 Button Cells and Coin Cells 4-80

4.11.10 Pouch Cells 4-80

4.11.11 Prismatic Cells 4-81

4.12 Naming Standards For Cell Identification 4-81

4.12.1 High Power And Energy Density 4-82

4.12.2 High Rate Capability 4-82

4.13 Comparison Of Rechargeable Battery Performance 4-83

4.14 Micro Battery Solid Electrolyte 4-86

4.14.1 Challenges in Battery and Battery System Design 4-87

4.15 Types of Batteries 4-90

4.15.1 Lead-Acid Batteries 4-90

4.15.2 Nickel-Based Batteries 4-91

4.15.3 Conventional Lithium-ion Technologies 4-91

4.15.4 Advanced Lithium-ion Batteries 4-92

4.15.5 Thin Film Battery Solid State Energy Storage 4-93

4.15.6 Ultra Capacitors 4-93

4.15.7 Fuel Cells 4-94

4.16 Battery Safety / Potential Hazards 4-94

4.16.1 Thin Film Solid-State Battery Construction 4-94

4.16.2 Battery Is Electrochemical Device 4-96

4.16.3 Battery Depends On Chemical Energy 4-97

4.16.4 Characteristics Of Battery Cells 4-97

Solid State Battery Company Profiles

5 SOLID STATE THIN FILM BATTERY COMPANY PROFILES 5-1

5.1 Balsara Research Group, UC Berkley 5-1

5.2 Cymbet 5-6

5.2.1 Cymbet Customer/Partner TI 5-14

5.2.2 Cymbet EH Building Automation 5-19

5.2.3 Cymbet Semi Passive RF Tag Applications 5-21

5.2.4 Cymbet Enerchips Environmental Regulation Compliance 5-22

5.2.5 Cymbet Investors 5-24

5.2.6 Cymbet Investors 5-25

5.2.7 Cymbet Distribution 5-28

5.2.8 Cymbet Authorized Resellers 5-31

5.2.9 Cymbet Private Equity Financing 5-34

5.3 Johnson Research & Development / Excellatron 5-35

5.3.1 Characteristics of Excellatron Batteries: 5-36

5.3.2 Excellatron Thin Film Solid State Battery Applications 5-39

5.3.3 Excellatron Strategic Relationships 5-40

5.4 Infinite Power Solutions 5-42

5.4.1 IPS THINERGY MECs 5-42

5.4.2 Infinite Power Solutions Breakthrough Battery Technology 5-43

5.4.3 IPS Targets Smart Phone Batteries 5-44

5.5 MIT Solid State Battery Research 5-45

5.5.1 When Discharging, Special Lithium Air Batteries Draw In Some Lithium Ions To Convert Oxygen Into Lithium Peroxide 5-47

5.6 NEC 5-49

5.6.1 NEC IT Services Business 5-50

5.6.2 NEC Platform Business 5-50

5.6.3 NEC Carrier Network Business 5-51

5.6.4 NEC Social Infrastructure Business 5-51

5.6.5 NEC Personal Solutions Business 5-51

5.7 Planar Energy Devices 5-52

5.8 Seeo 5-52

5.8.1 Seeo Investors 5-53

5.9 Toyota 5-54

5.10 Watchdata Technologies 5-56

List of Tables and Figures

Solid State Battery Executive Summary

Table ES-1 ES-2

Solid-State Battery Advantages and Disadvantages

Table ES-2 ES-4

Thin Film Battery Market Driving Forces

Figure ES-3 ES-7

Solid State Thin Film Battery Market Shares, Dollars,

First Three Quarters 2012

Figure ES-4 ES-9

Solid State Thin Film Market Forecasts, Dollars, Worldwide, 2013-2019

Solid State Battery Market Description and Market Dynamics

Table 1-1 1-11

Thin Film Battery Target Markets

Table 1-2 1-11

Principal Features Used To Compare Rechargeable Batteries

Figure 1-3 1-15

Energy Storage and Generation for Wireless Sensor Network

Figure 1-4 1-17

Energy Information Administration and Energy Loss Presentation

Solid State Battery Market Shares and Market Forecasts

Table 2-1 2-2

Solid-state battery Advantages and Disadvantages

Table 2-2 2-4

Thin Film Battery Market Driving Forces

Figure 2-3 2-7

Solid State Thin Film Battery Market Shares, Dollars, First

Three Quarters 2012

Table 2-4 2-8

Solid State Thin Film Battery Market Shares, Dollars,

Worldwide, First Three Quarters 2012

Figure 2-5 2-13

Solid State Thin Film Market Forecasts, Dollars, Worldwide, 2013-2019

Table 2-6 2-14

Solid State Thin Film Battery Market Application Forecasts,

Units and Dollars, Worldwide, 2013-2019

Figure 2-7 2-16

Solid State Thin Film Market Forecasts, Units, Worldwide,

2013-2019

Table 2-8 2-18

Solid State Thin Film Battery Market Forecasts Units and Dollars,

Worldwide, 2013-2019

Figure 2-8 2-19

Small Solid State Thin Film Battery Market Shipments Forecasts

Dollars, Worldwide, 2013-2019

Figure 2-9 2-20

Mid-Size Solid State Thin Film Battery, Market Forecasts

Dollars, Worldwide, 2013-2019

Figure 2-10 2-21

Small Solid State Thin Film Battery Market Forecasts, Units,

Worldwide, 2013-2019

Figure 2-11 2-22

Mid-Size Solid State Thin Film Market Forecasts, Units,

Worldwide, 2013-2019

Figure 2-12 2-24

IBM Smarter Planet: Trillions of Interconnected Sensors

Figure 2-13 2-25

Cymbet Energy Harvesting (EH) Building Automation

Figure 2-14 2-26

Cymbet Energy Harvesting (EH) Medical Applications

Figure 2-15 2-27

Cymbet Semi Passive RF Tag Applications

Figure 2-16 2-28

RF Charging and Comms – TI and Cymbet

Figure 2-17 2-30

Cymbet Millimeter Scale Applications

Figure 2-18 2-32

Solid State Thin Film Battery Market Segments, Dollars,

Worldwide, 2012

Figure 2-19 2-33

Solid State Thin Film Battery Market Segments, Dollars, Worldwide, 2019

Table 2-20 2-34

Solid State Thin Film Battery Market Application Forecasts

Units and Dollars, Worldwide, 2013-2019

Figure 2-21 2-35

Solid State Thin Film Battery Market Application Forecasts

Units and Dollars, Worldwide, 2013-2019

Figure 2-22 2-37

Cymbet Energy Harvesting Applications

Table 2-23 2-46

Excelatron Comparison of Battery Performances

Table 2-24 2-48

Solid State Thin Film Battery Market Installed Base

Forecasts Units and Dollars, Worldwide, 2013-2019

Figure 2-25 2-50

Solid State Thin Film Battery Regional Market Segments, 2012

Table 2-26 2-51

Solid State Thin Film Battery Regional Market Segments, 2012

Solid State Battery Product Description

Table 3-1 3-2

EnerChip device Eco-Friendly Attributes:

Table 3-2 3-4

Cymbet Embedded Energy And The Advantages Of Point Of Load

Energy Delivery Functions

Table 3-3 3-5

Cymbet Solid State Energy Storage Devices And IC

Table 3-4 3-6

Cymbet Pervasive Power Architecture Advantages

Table 3-5 3-6

Cymbet Pervasive Power architecture Embedded Energy Advantages

Table 3-6 3-7

Cymbet Cross Power Grid Functions

Table 3-7 3-8

Cymbet Point of Load Power-On-Chip Benefits

Table 3-8 3-9

Cymbet Assessment of Chip Grid Trends

Figure 3-9 3-11

Cymbet Solid State Rechargeable Energy Storage Devices

Figure 3-10 3-12

Cymbet Rechargeable Solid State Energy bare die Co-Packaged

Side-By Side With An IC:

Figure 3-11 3-13

Rechargeable Solid State Energy bare die Co-packaged in

"wedding cake" die stack:

Figure 3-12 3-13

Cymbet Rechargeable Solid State Energy bare die in System on Chip module:

Figure 3-13 3-14

Solid State Energy Storage Built On Silicon Wafer Solder

Attached To The Circuit Board Surface

Figure 3-14 3-14

Solid State Energy Storage Silicon Wafer Solder Attached To The

Circuit Board Surface

Figure 3-15 3-17

Cymbet Millimeter Scale Applications

Figure 3-16 3-19

Cymbet Millimeter-Sized Solar Energy Harvesting Sensor

Sits On A Solid State Rechargeable Energy Storage Device

Figure 3-17 3-20

Cymbet Millimeter Scale Computer Wireless Sensor Photo On US

Penny for Size Reference

Figure 3-18 3-21

EnerChip 1uAh Battery On US Dollar For Size Reference

Figure 3-19 3-23

Cymbet Millimeter Scale EH-based Computer IOPM Layers Block Diagram

Figure 3-20 3-27

Cymbet Wireless Sensor IOPM Block Diagram

Table 3-21 3-28

Cymbet Intra Ocular Pressure Sensor IOPM basic elements:

Figure 3-22 3-29

Infinite Power Solutions Thinergy MEC201

Figure 3-23 3-31

Infinite Power Solutions (IPS) THINERGY MEC225

Table 3-24 3-32

Device: THINERGY MEC225 Specifications

Figure 3-25 3-33

Infinite Power Solutions (IPS) Device: THINERGY MEC220

Table 3-26 3-34

Infinite Power Solutions (IPS) THINERGY MEC220 Specifications

Figure 3-27 3-35

Device: THINERGY MEC201

Table 3-28 3-36

Device: THINERGY MEC201

Figure 3-29 3-37

Infinite Power Solutions (IPS) THINERGY® MEC202

Table 3-30 3-38

Device: Infinite Power Solutions (IPS) THINERGY MEC202

Table 3-31 3-39

Infinite Power Solutions (IPS) THINERGY MEC202 Features

Table 3-32 3-40

Infinite Power Solutions (IPS) THINERGY MEC202 Applications

Table 3-33 3-41

Infinite Power Solutions (IPS) THINERGY MEC202 Benefits

Figure 3-34 3-42

Infinite Power Solutions (IPS) THINERGY MEC202 Typical Discharge

Curves @25°C (1.7 mAh Standard Grade Cell)

Figure 3-35 3-43

Infinite Power Solutions (IPS) THINERGY MEC202 Typical Discharge

Curves @25°C (1.7 mAh Performance Grade Cell)

Figure 3-36 3-44

Typical Maximum Current vs. Temperature —All Capacity Options

Figure 3-37 3-45

Typical Charge Curve @ 25°C — All Capacity Options

Figure 3-38 3-46

OCV as a Function of State of Charge at 25°C

Table 3-39 3-47

Infinite Power Solutions (IPS) THINERGY MEC202 Functions

Table 3-40 3-50

Infinite Power Solutions (IPS) THINERGY Charging Methods

Table 3-41 3-50

Infinite Power Solutions (IPS) THINERGY Energy Harvesting Charging Methods

Figure 3-42 3-56

Excelatron Schematic Cross Section Of A Thin Film Solid-State Battery

Figure 3-43 3-58

Charge/discharge profile of Excellatron's thin film battery at 25ºC.

Figure 3-44 3-59

Charge/discharge profile of Excellatron's thin film battery at 150ºC.

Figure 3-45 3-60

High temperature (150ºC) charge and Discharge Capacity As A

Function Of Cycle Number For A Thin Film Battery.

Figure 3-46 3-61

Excelatron Capacity And Resistance

Figure 3-47 3-62

Excelatron High Rate Pulse Discharge

Figure 3-48 3-63

Excelatron High Rate Pulse Discharge

Figure 3-49 3-64

Excelatron Long Term Cyclability of a Thin Film Solid State Battery

Figure 3-50 3-65

Excelatron Long Term Cyclability Of A Thin Film Battery Thicker Cathode

Figure 3-51: 3-66

Excelatron Discharge Capacity

Figure 3-52 3-67

Excelatron Thin film Batteries Deposited On A Thin Polymer Substrate

Figure 3- 53 3-68

Excelatron Rechargeable Thin Film Solid State Battery Thickness

Table 3-54 3-69

Excelatron Comparison of Battery Performances

Table 3-55 3-71

Excellatron High Capacity Thin Film Batteries

Figure 3-56 3-72

Excellatron Voltage And Current Profile of a 10 mAh Battery Characteristics

Figure 3-57 3-73

NEC High Voltage, Long Life Manganese Lithium-Ion Battery

Solid State Battery Technology

Figure 4-1 4-2

Cymbet EnerChip CC Smart Solid State Batteries Functional DIagram

Table 4-2 4-4

Cymbet EnerChip Single Chip Ups Provides Many Advantages For

Electronics Designers:

Figure 4-3 4-6

Cymbet Energy Processor for Max Peak Power 6

Figure 4-4 4-7

Cymbet Energy Harvesting Building Automation 7

Table 4-5 4-8

Cymbet Solutions Areas 8

Figure 4-6 4-11

Cymbet Energy Harvesting Evaluation Kit 11

Table 4-7 4-14

Cymbet Products Offered by Digi-Key 14

Table 4-8 4-17

Infinite Power Solutions (IPS) Technology and Chemistry 17

Figure 4-9 4-23

IPS THINERGY MECs 23

Table 4-10 4-31

Thin Film Battery Unique Properties 31

Figure 4-11 4-33

Solid-State Lithium-Air Battery (Highlighted In Orange) 33

Figure 4-12 4-36

Department of Energy's Oak Ridge National Laboratory Battery Behavior At The Nanoscale 36

Figure 4-13 4-40

Rice Researchers Advanced Lithium-Ion Technique has Microscopic Pores That Dot A Silicon Wafer 40

Figure 4-14 4-43

Rice University50 Microns Battery 43

Figure 4-15 4-48

Discharge of a Lithium Battery 48

Figure 4-16 4-52

Nanoparticle Illustration 52

Figure 4-17 4-55

Silver Nanoplates Decorated With Silver Oxy Salt Nanoparticles

Figure 4-17a 4-57

Graphene Molecular Illustration

(Lawrence Berkeley National Laboratory)

Figure 4-18 4-61

John Bates Patent: Thin Film Battery and Method for Making Same

Table 4-19 4-67

Approaches to Selective Emitter (SE) Technologies

Figure 4-20 4-72

XRD Patterns of MnO Thin Films

Table 4-21 4-80

Comparison Of Battery Performances

Table 4-22 4-81

Common Household-Battery Sizes, Shape, and Dimensions

Table 4-23 4-85

Thin Films For Advanced Batteries

Table 4-24 4-86

Thin Film Batteries Technology Aspects

Table 4-25 4-87

Solid State Thin Film Battery Applications

Figure 4-26 4-88

Design Alternatives of Thin Film Rechargable Batteries

Table 4-27 4-89

Challenges in Battery and Battery System Design

Figure 4-28 4-96

Typical Structure Of A Thin Film Solid State Battery

Table 4-30 4-99

Characteristics Of Battery Cells

Solid State Battery Company Profiles

Figure 5-1 5-3

Balsara Research Group Transported Material and Transporting Medium

Table 5-2 5-4

Balsara Research Group Collaborators:

Table 5-3 5-5

Balsara Research Group Funding Sources

Table 5-4 5-7

Cymbet Supporting Technologies

Table 5-5 5-9

Cymbet Smart Energy

Figure 5-6 5-10

Cymbet Industry Trends and Storage Solutions Alignment

Table 5-7 5-11

Cymbet Addresses Energy Storage Requirements for New Products

Figure 5-8 5-12

Key Battery Characteristics

Figure 5-9 5-13

Cymbet Solid State Batteries – Wafer to PCB

Table 5-10 5-14

Cymbet Customers

Table 5-11 5-16

Cymbet / TI EnerChip Key Benefits

Table 5-12 5-17

Cymbet / TI EnerChip Key Features

Figure 5-13 5-18

RF Charging and Comms – TI and Cymbet

Figure 5-14 5-19

Cymbet EH Building Automation

Figure 5-15 5-21

Cymbet Semi Passive RF Tag Applications

Figure 5-16 5-22

Cymbet Enerchips Environmental Regulation Compliance

Table 5-17 5-23

Cymbet Solid State Energy Storage Innovation

Figure 5-18 5-24

Cymbet Strategic Investors

Figure 5-19 5-25

Cymbet Investors

Figure 5-20 5-28

Cymbet Distribution Partners

Figure 5-21 5-29

Cymbet Distributors

Table 5-22 5-32

Cymbet Authorized Resellers

Figure 5-23 5-33

Cymbet Industry Awards and Recognition

Table 5-24 5-37

Characteristics of Excellatron Batteries

Table 5-25 5-38

Technology of Excellatron Batteries

Table 5-26 5-40

Excellatron Achievements:

Table 5-27 5-41

Excellatron Strategic Relationships

Figure 5-28 5-46

Solid-State Lithium-Air Battery (Highlighted In Orange)

Figure 5-29 5-55

Toyota Thin Film Battery

To order this report:

Electronic_Component_and_Semiconductor Industry: Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

Contact Nicolas: nicolasbombourg@reportlinker.com
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
Gemini is Yahoo’s native and search advertising platform. To ensure the quality of a complex distributed system that spans multiple products and components and across various desktop websites and mobile app and web experiences – both Yahoo owned and operated and third-party syndication (supply), with complex interaction with more than a billion users and numerous advertisers globally (demand) – it becomes imperative to automate a set of end-to-end tests 24x7 to detect bugs and regression. In th...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"MobiDev is a software development company and we do complex, custom software development for everybody from entrepreneurs to large enterprises," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
SYS-CON Events announced today that Telecom Reseller has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, introduced two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a multip...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
An increasing number of companies are creating products that combine data with analytical capabilities. Running interactive queries on Big Data requires complex architectures to store and query data effectively, typically involving data streams, an choosing efficient file format/database and multiple independent systems that are tied together through custom-engineered pipelines. In his session at @BigDataExpo at @ThingsExpo, Tomer Levi, a senior software engineer at Intel’s Advanced Analytics gr...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things’). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing? IoT is not about the devices, it’s about the data consumed and generated. The devices are tools, mechanisms, conduits. In his session at Internet of Things at Cloud Expo | DXWor...