Welcome!

IBM Cloud Authors: Liz McMillan, Elizabeth White, Pat Romanski, Kevin Benedict, William Schmarzo

News Feed Item

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019

LONDON, Jan. 8, 2014 /PRNewswire/ -- Reportbuyer.com just published a new market research report:

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019


Overview:

Big Data refers to a massive volume of both structured and unstructured data that is so large that it is difficult to process using traditional database and software techniques. While the presence of such datasets is not something new, the past few years have witnessed immense commercial investments in solutions that address the processing and analysis of Big Data.

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.

Despite challenges, such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019.

This report provides an in-depth assessment of the global Big Data market, including a study of the business case, application use cases, vendor landscape, value chain analysis, case studies and a quantitative assessment of the industry from 2013 to 2019.

Topics covered in the report:

The Business Case for Big Data: An assessment of the business case, growth drivers and barriers for Big Data
Big Data Technology: A review of the underlying technologies that resolve big data complexities
Big Data Use Cases: A review of investments sectors and specific use cases for the Big Data market
The Big Data Value Chain: An analysis of the value chain of Big Data and the major players involved within it
Vendor Assessment & Key Player Profiles: An assessment of the vendor landscape of leading players within the Big Data market
Market Analysis and Forecasts: A global and regional assessment of the market size and forecasts for the Big Data market from 2014 to 2019

Key Findings:

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.
Mind Commerce has determined that IBM leads the Big Data market in terms of current investments (from a vendor perspective), with estimated revenue for $1.3 Billion in 2012 for its Big Data services, software and hardware sale
Despite challenges such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019

Companies in Report:

Accenture
Adaptive
Adobe
Amazon
Apache Software Foundation
APTEAN (Formerly CDC Software)
BoA
Bristol Myers Squibb
Brooks Brothers
Centre for Economics and Business Research
CIA
Cisco Systems
Cloud Security Alliance (CSA)
Cloudera
Dell
EMC
Facebook
Facebook
GoodData Corporation
Google
Google
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
JPMC
McLaren
Microsoft
MongoDB (Formerly 10Gen)
Morgan Stanley
MU Sigma
Netapp
NSA
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
T-Mobile
TomTom
US Xpress
VMware (Part of EMC)
Vodafone

Target Audience:

Investment Firms
Media Companies
Utilities Companies
Financial Institutions
Application Developers
Government Organizations
Retail & Hospitality Companies
Other Vertical Industry Players
Analytics and Data Reporting Companies
Healthcare Service Providers & Institutions
Fixed and Mobile Telecom service providers
Big Data Technology/Solution (Infrastructure, Software, Service) Vendors
1 Chapter 1: Introduction 8
1.1 Executive Summary 8
1.2 Topics Covered 9
1.3 Key Findings 10
1.4 Target Audience 11
1.5 Companies Mentioned 12
2 Chapter 2: Big Data Technology & Business Case 15
2.1 Defining Big Data 15
2.2 Key Characteristics of Big Data 15
2.2.1 Volume 15
2.2.2 Variety 16
2.2.3 Velocity 16
2.2.4 Variability 16
2.2.5 Complexity 16
2.3 Big Data Technology 17
2.3.1 Hadoop 17
2.3.1.1 MapReduce 17
2.3.1.2 HDFS 17
2.3.1.3 Other Apache Projects 18
2.3.2 NoSQL 18
2.3.2.1 Hbase 18
2.3.2.2 Cassandra 18
2.3.2.3 Mongo DB 18
2.3.2.4 Riak 19
2.3.2.5 CouchDB 19
2.3.3 MPP Databases 19
2.3.4 Others and Emerging Technologies 20
2.3.4.1 Storm 20
2.3.4.2 Drill 20
2.3.4.3 Dremel 20
2.3.4.4 SAP HANA 20
2.3.4.5 Gremlin & Giraph 20
2.4 Market Drivers 21
2.4.1 Data Volume & Variety 21
2.4.2 Increasing Adoption of Big Data by Enterprises & Telcos 21
2.4.3 Maturation of Big Data Software 21
2.4.4 Continued Investments in Big Data by Web Giants 21
2.5 Market Barriers 22
2.5.1 Privacy & Security: The 'Big' Barrier 22
2.5.2 Workforce Re-skilling & Organizational Resistance 22
2.5.3 Lack of Clear Big Data Strategies 23
2.5.4 Technical Challenges: Scalability & Maintenance 23
3 Chapter 3: Key Investment Sectors for Big Data 24
3.1 Industrial Internet & M2M 24
3.1.1 Big Data in M2M 24
3.1.2 Vertical Opportunities 24
3.2 Retail & Hospitality 25
3.2.1 Improving Accuracy of Forecasts & Stock Management 25
3.2.2 Determining Buying Patterns 25
3.2.3 Hospitality Use Cases 25
3.3 Media 26
3.3.1 Social Media 26
3.3.2 Social Gaming Analytics 26
3.3.3 Usage of Social Media Analytics by Other Verticals 26
3.4 Utilities 27
3.4.1 Analysis of Operational Data 27
3.4.2 Application Areas for the Future 27
3.5 Financial Services 27
3.5.1 Fraud Analysis & Risk Profiling 27
3.5.2 Merchant-Funded Reward Programs 27
3.5.3 Customer Segmentation 28
3.5.4 Insurance Companies 28
3.6 Healthcare & Pharmaceutical 28
3.6.1 Drug Development 28
3.6.2 Medical Data Analytics 28
3.6.3 Case Study: Identifying Heartbeat Patterns 28
3.7 Telcos 29
3.7.1 Telco Analytics: Customer/Usage Profiling and Service Optimization 29
3.7.2 Speech Analytics 29
3.7.3 Other Use Cases 29
3.8 Government & Homeland Security 30
3.8.1 Developing New Applications for the Public 30
3.8.2 Tracking Crime 30
3.8.3 Intelligence Gathering 30
3.8.4 Fraud Detection & Revenue Generation 30
3.9 Other Sectors 31
3.9.1 Aviation: Air Traffic Control 31
3.9.2 Transportation & Logistics: Optimizing Fleet Usage 31
3.9.3 Sports: Real-Time Processing of Statistics 31
4 Chapter 4: The Big Data Value Chain 32
4.1 How Fragmented is the Big Data Value Chain? 32
4.2 Data Acquisitioning & Provisioning 33
4.3 Data Warehousing & Business Intelligence 33
4.4 Analytics & Virtualization 33
4.5 Actioning & Business Process Management (BPM) 34
4.6 Data Governance 34
5 Chapter 5: Key Players in the Big Data Market 35
5.1 Vendor Assessment Matrix 35
5.2 Apache Software Foundation 36
5.3 Accenture 36
5.4 Amazon 36
5.5 APTEAN (Formerly CDC Software) 37
5.6 Cisco Systems 37
5.7 Cloudera 37
5.8 Dell 37
5.9 EMC 38
5.10 Facebook 38
5.11 GoodData Corporation 38
5.12 Google 38
5.13 Guavus 39
5.14 Hitachi Data Systems 39
5.15 Hortonworks 39
5.16 HP 40
5.17 IBM 40
5.18 Informatica 40
5.19 Intel 40
5.20 Jaspersoft 41
5.21 Microsoft 41
5.22 MongoDB (Formerly 10Gen) 41
5.23 MU Sigma 42
5.24 Netapp 42
5.25 Opera Solutions 42
5.26 Oracle 42
5.27 Pentaho 43
5.28 Platfora 43
5.29 Qliktech 43
5.30 Quantum 44
5.31 Rackspace 44
5.32 Revolution Analytics 44
5.33 Salesforce 45
5.34 SAP 45
5.35 SAS Institute 45
5.36 Sisense 45
5.37 Software AG/Terracotta 46
5.38 Splunk 46
5.39 Sqrrl 46
5.40 Supermicro 47
5.41 Tableau Software 47
5.42 Teradata 47
5.43 Think Big Analytics 48
5.44 Tidemark Systems 48
5.45 VMware (Part of EMC) 48
6 Chapter 6: Market Analysis 49
6.1 Big Data Revenue: 2014 - 2019 49
6.2 Big Data Revenue by Functional Area: 2014 - 2019 50
6.2.1 Supply Chain Management 51
6.2.2 Business Intelligence 52
6.2.3 Application Infrastructure & Middleware 53
6.2.4 Data Integration Tools & Data Quality Tools 54
6.2.5 Database Management Systems 55
6.2.6 Big Data Social & Content Analytics 56
6.2.7 Big Data Storage Management 57
6.2.8 Big Data Professional Services 58
6.3 Big Data Revenue by Region 2014 - 2019 59
6.3.1 Asia Pacific 60
6.3.2 Eastern Europe 61
6.3.3 Latin & Central America 62
6.3.4 Middle East & Africa 63
6.3.5 North America 64
6.3.6 Western Europe 65

List of Figures

Figure 1: The Big Data Value Chain 32
Figure 2: Big Data Vendor Ranking Matrix 2013 35
Figure 3: Big Data Revenue: 2013 - 2019 ($ Million) 49
Figure 4: Big Data Revenue by Functional Area: 2013 - 2019 ($ Million) 50
Figure 5: Big Data Supply Chain Management Revenue: 2013 - 2019 ($ Million) 51
Figure 6: Big Data Supply Business Intelligence Revenue: 2013 - 2019 ($ Million) 52
Figure 7: Big Data Application Infrastructure & Middleware Revenue: 2013 - 2019 ($ Million) 53
Figure 8: Big Data Integration Tools & Data Quality Tools Revenue: 2013 - 2019 ($ Million) 54
Figure 9: Big Data Database Management Systems Revenue: 2013 - 2019 ($ Million) 55
Figure 10: Big Data Social & Content Analytics Revenue: 2013 - 2019 ($ Million) 56
Figure 11: Big Data Storage Management Revenue: 2013 - 2019 ($ Million) 57
Figure 12: Big Data Professional Services Revenue: 2013 - 2019 ($ Million) 58
Figure 13: Big Data Revenue by Region: 2013 - 2019 ($ Million) 59
Figure 14: Asia Pacific Big Data Revenue: 2013 - 2019 ($ Million) 60
Figure 15: Eastern Europe Big Data Revenue: 2013 - 2019 ($ Million) 61
Figure 16: Latin & Central America Big Data Revenue: 2013 - 2019 ($ Million) 62
Figure 17: Middle East & Africa Big Data Revenue: 2013 - 2019 ($ Million) 63
Figure 18: North America Big Data Revenue: 2013 - 2019 ($ Million) 64
Figure 19: Western Europe Big Data Revenue: 2013 - 2019 ($ Million) 65


Read the full report:
Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019
http://www.reportbuyer.com/business_government/outsourcing_bpo/big_data_market_business_case_market_analysis_forecasts_2014_2019.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Business_Outsourcing


For more information:
Sarah Smith
Research Advisor at Reportbuyer.com
Email: query@reportbuyer.com
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
Much of IT terminology is often misused and misapplied. Modernization and transformation are two such terms. They are often used interchangeably even though they mean different things and have very different connotations. Indeed, it is somewhat safe to assume that in IT any transformative effort is likely to also have a modernizing effect, and thus, we can see these as levels of improvement efforts. However, many businesses are being led to believe if they don’t transform now they risk becoming ...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
"Tintri was started in 2008 with the express purpose of building a storage appliance that is ideal for virtualized environments. We support a lot of different hypervisor platforms from VMware to OpenStack to Hyper-V," explained Dan Florea, Director of Product Management at Tintri, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, explained how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.