Welcome!

Websphere Authors: Carmen Gonzalez, Glenn Rossman, Elizabeth White, Yeshim Deniz, Liz McMillan

News Feed Item

Agricultural Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020

NEW YORK, Feb. 10, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Agricultural Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020
http://www.reportlinker.com/p02003735/Agricultural-Robots-Market-Shares-Strategies-and-Forecasts-Worldwide-2014-to-2020.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Agriculture

WinterGreen Research announces that it has published a new study Agricultural Robots Market Shares, Strategy, and Forecasts, Worldwide, 2014 to 2020. The 2014 study has 430 pages, 236 tables and figures. Worldwide markets are poised to achieve significant growth as the agricultural robots are used in every aspect of farming, milking, food production, and animal control to implement automated process for the industry.
Weed control is able to achieve crop-yield increases. Robot technology is deploying machines for weed control, promising to improve crop yields. Robots make the crops safer by eliminating or virtually eliminating herbicides. Downstream processing system solutions and robots achieve automation of process. Robots meet stringent hygiene and safety regulations, work tirelessly 24 hours a day, and relieve human workers of physically arduous tasks. Robots contribute to the freshness, variety and quality of food. Projects are ongoing.
High value crops are a target of agricultural robotic development. What could be tastier than a strawberry, perfectly formed, and perfectly ripened? New agricultural robots are able to improve the delivery of consistent quality food, and to implement efficiency in managing food production.

Strawberries are a high profit crop. A new generation of machines has just been born. Strawberry Harvesters with the world's most advanced technology to give maximum performance to a farm. Harvesting robots can optimize the productivity of the farming business. Growers can get the best results in a berry farm using automated process. Automated picking collection systems improve labor productivity, give speed and agility to harvest operations.
The robotic platforms are capable of site-specific spraying. This is targeted spraying only on foliage and selected targets. It can be used for selective harvesting of fruit. The robots detect the fruit, sense its ripeness, then move to grasp and softly detach only ripe fruit.
Agricultural robots address automation of process for agribusiness. The challenge being addressed is to guide farmers towards a new economic model. The aim is to meet demands of a global market. Harvesting is one benefit. Crop-yield increases come from weed control. Robot technology is deploying its machines for weed control, promising to improve crop yields. Robots make the crops safer by eliminating or virtually eliminating herbicides.
Machinery manufacturers and downstream processing industries look for system solutions and robots to achieve automation of process. Robots meet stringent hygiene and safety regulations, work tirelessly 24 hours a day, and relieve human workers of physically arduous tasks. Robots contribute to the freshness, variety and quality of food.

According to Susan Eustis, principal author of the market research study, "Agricultural robotic projects are ongoing. The key to industrial farm robots is keeping costs down. Adapting existing commercial vehicles instead of building new ones is the best way to build viable agricultural robots."
Agricultural robot market size at $817 million in 2013 are anticipated to reach $16.3 billion by 2020, a hefty growth for a nascent market. Agricultural robots are but part of an overall trend toward more automated process for every type of human endeavor. Robots are being used more widely than expected in a variety of sectors, and the trend is likely to continue with robotics becoming as ubiquitous as computer technology over the next 15 years.

1. Market Agricultural Robot Description and Market Dynamics

1.1 Agricultural Markets
1.1.1 Automation Potential In The Agricultural Industry
1.1.2 Robots Find A Place in the Agriculture Industry
1.1.3 Agricultural Robots Make Production More Efficient
1.1.4 Use Of Industrial Robots for Agriculture
1.1.5 Agricultural Robotics and Automation
1.2 RAS Agricultural Robotics and Automation (AgRA) Technical Committee
1.3 Farm Bots Pick, Plant and Drive
1.3.1 Relying On Illegal Immigrants Can Be A Legal Liability
1.4 Nursery & Greenhouse Sector

1.4.1 Harvest Automation Labor Process Automation
1.4.2 The Growing Season Is Also The Shipping Season
1.5 Improving Nursery Efficiency
1.5.1 Small Mobile Robot for Plants and Shrubs
1.6 Agricultural Producers Seek To Improve Operations
1.6.1 Increasing Cows Days Of Grazing
1.7 cRops (Clever Robots for Crops) Robots To Harvest High Value Crops
1.8 European Union Seventh Framework Program
1.9 Strawberries
1.9.1 Strawberries in the US
1.10 Transformational Agricultural Robots

2 Agricultural Robots Market Share and Market Forecasts

2.1 Agricultural Robot Market Driving Forces
2.1.1 Agricultural Robot Target Markets
2.1.2 Robotic Agriculture Trends
2.2 Agricultural Robot Market Shares
2.2.1 Lely Group Revenue
2.2.2 Use Of Standard Industrial Robots In Agriculture
2.2.3 Kuka
2.2.4 Fanuc
2.2.5 Agrobot High Value Crop Robotic Automation
2.2.6 John Deere Autonomous Tractors
2.2.7 Harvest Automation
2.2.8 Vision Robotics
2.3 Agricultural Robot Market Forecasts
2.3.1 Agricultural Robot Market Segments

2.3.2 Agricultural Robotics Key Economic Enabler
2.3.3 High Value Fruit Crops: Strawberries
2.3.4 Nursery And Garden Products
2.3.5 Ornamental Plant Markets
2.3.6 Golf courses Robotic Mowing
2.3.7 Crop Dusting With Remote-Controlled Helicopters
2.3.8 Distributed Robotics Garden
2.3.9 Cultibotics
2.3.10 Agricultural Robot Vision Pruning Systems
2.4 Agricultural Robot Pricing
2.4.1 Harvest Automation
2.4.2 Shibuya Seiko Co. Strawberry Picking Robot
2.4.3 Wall-Ye V.I.N. Robot Functions
2.4.4 iRobot Automated Lawn Mowing
2.5 Agricultural Robots TCO / ROI
2.5.1 Cost Structures and Roles of Agricultural Robots
2.6 Agricultural Robot Regional Analysis
2.6.1 Production of Agricultural Robotics in China
2.6.2 Chinese Agricultural Machinery
2.6.3 Agricultural Robots in Africa

3 Agricultural Robots Product Description

3.1 John Deere Autonomous Tractor
3.1.1 John Deere Crop Spraying
3.2 Kuka
3.2.1 Kuka Robots in the Agricultural Industry
3.2.2 Kuka Robots in the Food Processing Industry
3.2.3 Kuka Automation in Agriculture
3.3 FANUC
3.3.1 Fanuc Vegetable Sorting Robot
3.3.2 FANUC Robodrill DiA5 Series
3.4 ABB Robots
3.4.1 ABB Symphony Plus
3.5 Yaskawa
3.5.1 Yaskawa Industrial AC Drives 1/8 thru 1750 Horsepower
3.5.2 Yaskawa Specialty Pump Drives 3/4 thru 500 Horsepower
3.5.3 Yaskawa Servo Systems and Motion Controllers
3.5.4 Motoman Robot Handling and Palletizing Bags of Livestock Feed
3.5.5 Motoman Agriculture Robotics Palletizing Bags Solution
3.5.6 Motoman Robotics Agricultural Robot Palletizing
Bags Fixtures / Tooling Details
3.5.7 Motoman Agricultural Grain Bin Dryer Fan Wheels
3.5.8 Motoman Robotics Fixtures/Tooling Details
3.5.9 Motoman Agricultural Irrigation Pipe
3.5.10 Motoman Robotics Fixtures/Tooling Details
3.5.11 Motoman Agricultural Equipment
3.5.12 Motoman Robotics Fixtures/Tooling Details
3.5.13 Motoman Round Baler Pickup Frames for Agricultural Equipment
3.5.14 Motoman Robotics Fixtures/Tooling Details
3.5.15 Motoman Skid Steer Loader Mount Plates
3.5.16 Motoman Bags of Livestock Feed

3.5.17 Motoman Robotics Fixtures/Tooling Details
3.6 Harvest Automation
3.6.1 Harvest Automation Technology
3.6.2 Harvest Automation Behavior-Based Robotics
3.7 Robotic Harvesting
3.7.1 Robotic Harvesting Strawberry Harvester
3.8 Agrobot SW 6010
3.8.1 Agrobot AGB: Harvesting High Level System
3.8.2 Agrobot AG Vision
3.9 Blue River Technology
3.9.1 Blue River Precision Lettuce Thinning - 40/42" Beds
3.9.2 Blue River Precision Lettuce Thinning - 80/84" Beds
3.9.3 Lettuce Bot, Blue River Technology
3.10 cRops (Clever Robot for Crops)
3.10.1 cRops European Project, Made Up Of Universities And Labs
3.11 Jaybridge Robotics Agriculture
3.11.1 Jaybridge Robotics Kinze Partnering, Autonomous
Vehicle Row Crop Harvesting
3.11.2 Jaybridge Software Expertise
3.12 Nano Ganesh
3.13 Aqua Spy
3.14 8 Villages
3.15 IBM / Bari Fishing Market App

3.16 M Farm
3.17 Sustainable Harvest
3.18 Tractor Harvesting
3.19 Spensa Technology Pest Control
3.20 The Pebble Watch
3.21 Louisiana State University AgBot
3.21.1 AgBot Uses Autonomous, Advanced GPS System
3.21.2 Agbot Small Robots Versatility
3.21.3 Delivery Robot
3.22 Harvard Robobee
3.22.1 Harvard Robobee Practical Applications
3.22.2 Harvard Robobee Vision and Aims
3.22.3 Harvard Robobee Body, Brain, and Colony
3.22.4 Harvard Robobee Body
3.22.5 Harvard Robobee Flexible Insect Wings And Flight
Stability In Turbulent Airflow
3.22.6 Harvard Robobee Sensor Networks
3.22.7 Harvard Robobee Colony
3.22.8 Harvard Robobee Sensor Network Development
3.23 iRobot's Automatic Lawn Mower
3.24 MIT Autonomous Gardener Equipment Mounted On The
Base of a Roomba
3.25 Carnegie Mellon University's National Robotics Engineering Center
3.25.1 Carnegie Mellon. Self-Guided Farm Equipment
3.26 Cesar the LettuceBot

3.27 Universidad Politécnica de Madrid Rosphere
3.27.1 Rosphere Spherical Shaped Robot
3.28 Shibuya Seiko Co.
3.28.1 Shibuya Seiko Co. Strawberry Picking Robot
3.28.2 Shibuya Seiko Robot Can Pick Strawberry Fields
3.29 University of California, Davis Robots For Harvesting Strawberries
3.30 Wall-Ye V.I.N. Robot
3.30.1 Wall-Ye V.I.N. Robot Functions
3.30.2 Wall-Ye V.I.N. Robot Security System
3.30.3 Wall-Ye V.I.N. Robot Prunes 600 Vines Per Day
3.31 Vision Robotics
3.31.1 Vision Robotics Automated Tractors
3.32 Nogchui Autonomous Tractor
3.32.1 Professor Nogchui Agricultural Tractor Robot Uses
Navigation Sensor Called AGI-3 GPS Compass Made by TOPCON
3.32.2 Professor Nogchui Agricultural Tractor Robot Mapping System
3.32.3 Nogchui Autonomous Tractor Robot Management Systems
3.33 Microsoft Agricultural Robot Software
3.34 Australian Centre for Field Robotics Herder Robot
3.34.1 Robotic Rover Herds Cows
3.35 Chinese Agricultural Robots
3.36 Oracle Robot
3.37 3D Robotics
3.38 Lely Automatic Milking Robots
3.38.1 Lely Astronaut Milking Robots
3.38.2 Lely Concept and Management
3.38.3 Lely Correct Feed Management
3.38.4 Lely Milk Robots At Large Dairy Farms

3.38.5 Lely Free Cow Traffic
3.39 Kyoto University Tomato Harvesting Robot
3.40 Yamaha Crop Dusting Drones
3.41 RHEA Robot Fleets for Accuracy
3.41.1 RHEA Synchronoized Weeding
3.41.2 Synchronized Spraying
3.42 Precise Path Robotics

4. Agricultural Robots Technology

4.1 Harvest Automation Proprietary Sensor Technology
4.1.1 Harvest Automation Robot System Architecture
4.1.2 Harvest Automation Technology
4.1.3 Behavior-Based Robotics
4.1.4 Proprietary Sensor Technology
4.1.5 System Design & Architecture
4.2 Welding Robots
4.3 Material Handling Robots:
4.4 Plasma Cutting Robots:
4.5 Agricultural Robotics and Automation Scope:
4.5.1 IEEE Standards Initiatives
4.5.2 Delft Robotics Institute
4.6 Robotics and Automation
4.7 An Electronic System Improves Different Agriculture Processes

5 Agricultural Robots Company Description

5.1 ABB Robotics
5.1.1 ABB Revenue
5.1.2 ABB Strategy
5.1.3 ABB Global Leader In Power And Automation Technologies
5.1.4 ABB and IO Deliver Direct Current-Powered Data Center Module
5.1.5 ABB / Validus DC Systems DC Power Infrastructure Equipment
5.1.6 ABB Technology
5.1.7 ABB Global Lab Power
5.1.8 ABB Global Lab Automation
5.2 Agile Planet
5.3 AgRA: RAS Agricultural Robotics and Automation (AgRA
5.4 Agrobot
5.4.1 Agrobot Innovation and Technology for Agribusiness
5.5 Astronaut
5.6 Australian Centre for Field Robotics
5.7 Blue River Technology
5.7.1 Blue River / Khosla Ventures
5.8 CNH Industrial / Fiat / Case IH
5.8.1 Case IH Customers Work Directly With Design Engineers
5.9 cRops
5.10 Fanuc
5.10.1 FANUC Corporation
5.10.2 Fanuc Revenue
5.11 Georgia Tech Agricultural Robots
5.12 Google
5.12.1 Google / Boston Dynamics
5.12.2 Boston Dynamics LS3 - Legged Squad Support Systems

5.12.3 Boston Dynamics CHEETAH - Fastest Legged Robot
5.12.4 Boston Dynamics Atlas - The Agile Anthropomorphic Robot
5.12.5 Boston Dynamics BigDog
5.12.6 Boston Dynamics LittleDog - The Legged Locomotion
Learning Robot
5.12.7 Google Robotic Division
5.12.8 Google Self-Driving Car
5.12.9 Google Cars Address Vast Majority Of Vehicle
Accidents Due To Human Error
5.12.10 Google Business
5.12.11 Google Corporate Highlights
5.12.12 Google Search
5.12.13 Google Revenue
5.12.14 Google Second Quarter 2013 Results
5.12.15 Google Revenues by Segment and Geography
5.12.16 Google / Motorola Headcount
5.12.17 Google / Motorola
5.13 Harvard Robobee
5.13.1 Harvard Robobee Funding
5.13.2 Harvard Robobee Main Area Of Research
5.13.3 Harvard Robobee OptRAD is used as an Optimizing
Reaction-Advection-Diffusion system.
5.13.4 Harvard Robobee The Team
5.14 Harvest Automation
5.14.1 Harvest Automation Ornamental Horticulture
5.14.2 Harvest Automation M Series C Financing
5.14.3 Harvest Robotic Solutions For The Agricultural Market
5.14.4 Harvest Automation Robots
5.15 IBM
5.15.1 IBM Strategy
5.15.2 IBM Business Partners
5.15.3 IBM Messaging Extension for Web Application Pattern
5.15.4 IBM MobileFirst
5.15.5 IBM Business Analytics and Optimization Strategy
5.15.6 IBM Growth Market Initiatives
5.15.7 IBM Business Analytics and Optimization

5.15.8 IBM Strategy
5.15.9 IBM Smarter Planet
5.15.10 IBM Cloud Computing
5.15.11 IBM Business Model
5.15.12 IBM Business Revenue Segments And Capabilities
5.16 iRobot
5.16.1 iRobot Home Robots:
5.16.2 iRobot Defense and Security: Protecting Those in Harm's Way
5.16.3 iRobot Role In The Robot Industry
5.16.4 iRobot SPARK (Starter Programs for the Advancement of
Robotics Knowledge)
5.16.5 iRobot Revenue
5.16.6 iRobot Acquires Evolution Robotics, Inc.
5.16.7 iRobot / Evolution Robotics
5.17 Jaybridge Robotics
5.17.1 Jaybridge Robotics Software Solutions
5.17.2 Jaybridge Systems Integration for Autonomous Vehicles
5.17.3 Jaybridge Robotics Rigorous Quality Processes
5.17.4 Jaybridge Robotics Professional, Experienced Team
5.17.5 Jaybridge Robotics Seamless Working Relationship with
Client Teams
5.18 Kuka
5.18.1 Kuka Revenue
5.18.2 Kuka Competition
5.18.3 Kuka Innovative Technology
5.18.4 Kuka Well Positioned With A Broad Product Portfolio In
Markets With Attractive Growth Prospects
5.18.5 Kuka Strategy

5.18.6 Kuka Corporate Policy
5.19 KumoTek
5.19.1 KumoTek Robotics Software Specialists
5.20 Kyoto University
5.21 Lely
5.21.1 Lely Group Business Concepts
5.21.2 Lely Group Revenue
5.22 Millennial Net
5.22.1 Millennial Net Wireless Sensor Network:
5.22.2 Millennial Net 1000-Node MeshScape GO Wireless
Sensor Network (WSN) Agricultural Sensors
5.22.3 Millennial Net's MeshScape GO WSN Technology
5.23 National Agriculture and Food Research Organization
5.23.1 NARO, a Japanese Incorporated Administrative Agency
5.23.2 National Agriculture and Food Research Organization
(NARO) third mid-term plan (from 2011 to 2015)
5.23.3 National Agriculture and Food Research Organization
Stable Food Supply
5.23.4 National Agriculture and Food Research Organization
Development For Global-Scale Issues And Climate Change

5.23.5 National Agriculture and Food Research Organization
Development To Create Demand For New Food Products
5.23.6 National Agriculture and Food Research Organization
Development For Utilizing Local Agricultural Resources
5.23.7 Japanese National Agriculture and Food Research Organization
5.24 Ossian Agro Automation / Nano Ganesh
5.25 Precise Path Robotics
5.26 Robotic Harvesting
5.27 Sicily Tractor Harvesting
5.28 Shibuya Seiki
5.28.1 Shibuya Kogyo Pharmaceutical Application Examples
5.28.2 Shibuya Kogyo Robotic System For Handling Soft Infusion Bags
5.28.3 Shibuya Kogyo Robotic Cell Culture System "CellPRO"
5.28.4 Shibuya Kogyo Robotic System For Leaflet & Spoon Placement
5.28.5 Shibuya Kogyo Robotic Collating System
5.28.6 Shibuya Kogyo Automated Aseptic Environmental
Monitoring System
5.29 Universidad Politécnica de Madrid
5.30 University of California, Davis
5.31 Wall-Ye V.I.N. Robot
5.32 Yamaha
5.33 Yaskawa
5.33.1 Yaskawa Revenue
5.33.2 Yaskawa Business
5.33.3 YASKAWA Electric Motion Control
5.33.4 YASKAWA Electric Robotics
5.33.5 YASKAWA Electric System Engineering
5.33.6 YASKAWA Electric Information Technology
5.33.7 Yaskawa / Motoman

5.34 Agricultural Robotic Research Labs
5.34.1 Outdated links
5.34.2 Agricultural Robotic Companies
5.34.3 IEEE Agricultural Technical Committee
5.34.4 Agricultural Robotic Conferences
5.34.5 Agricultural Robotic Publications
5.34.6 Selected VC Funding In Robotics

List of Tables and Figures

Figure ES-1
Agrobot Strawberry Picker
Table ES-2
Agricultural Robot Market Driving Forces
Table ES-3
Agricultural Robot Target Markets
Table ES-4
Robotic Agricultural Trends
Table ES-5
Agriculture Robotic Activities
Table ES-6
Market Forces for Agricultural Modernization
Table ES-7
Robotics – State of the Art Advantages
Table ES-8
Agricultural Robot Challenges
Figure ES-9
Agricultural Robot Market Shares, Dollars, Worldwide, 2013
Figure ES-10
Agricultural Robot Market Forecasts Dollars, Worldwide,
2014-2020
Table 1-1
Aspects of Agricultural Sector Modernization
Figure 1-2

Agricultural Robotics Positioned To Meet The Increasing Demands For
Food And Bioenergy
Source: John Deere.
Figure 1-3
Autonomous Orchard Vehicle
Figure 1-4
Automated Picker Machine
Table 1-5
Nursery Robot Benefits
Figure 1-6
Cows Grazing
Figure 1-7
European Union Seventh Framework Program cRops
(Clever Robots for Crops) Focus On Harvesting High Value Crops
Figure 1-8
Transformational Agricultural Robots

Figure 2-1
Agrobot Strawberry Picker
Table 2-2
Agricultural Robot Market Driving Forces
Table 2-3
Agricultural Robot Target Markets
Table 2-4
Robotic Agricultural Trends
Table 2-5
Agriculture Robotic Activities
Table 2-6
Market Forces for Agricultural Modernization
Table 2-7
Robotics – State of the Art Advantages
Table 2-8
Agricultural Robot Challenges
Figure 2-9
Agricultural Robot Market Shares, Dollars, Worldwide, 2013
Table 2-10
Agricultural Robot Market Shares, Dollars, Worldwide, 2013

Figure 2-11
Agrobot Strawberry Picker
Figure 2-12
John Deere Autonomous Tractors
Figure 2-13
Agricultural Robot Market Forecasts Dollars, Worldwide,
2014-2020
Table 2-14
Agricultural Robot Market Forecast, Shipments, Dollars,
Worldwide, 2014-2020
Table 2-15
Agricultural Robot Market Industry Segments, Cow Milking and
Barn Systems, Strawberries and High Value Crops, Wheat, Rice,
Corn Harvesting, Grape Pruning and Harvesting, Nursery Management,
Golf Course and Lawn Mowing, Drone Crop Dusting Segments,
Dollars, Worldwide, 2014-2020
Table 2-16
Agricultural Robot Market Industry Segments, Cow Milking and
Barn Systems, Strawberries and High Value Crops, Wheat, Rice,
Corn Harvesting, Grape Pruning and Harvesting, Nursery Management,
Golf Course and Lawn Mowing, Drone Crop Dusting Segments,
Percent , Worldwide, 2014-2020
Figure 2-17
Multiple Small Intelligent Machines Replace Large Manned Tractors
Table 2-18
Agricultural Robots for Ornamental Plant Handling Benefits
Figure 2-19
UC Davis Using Yahama Helicopter Drones For Crop Dusting

Figure 2-20
Yahama Crop Duster
Figure 2-21
Distributed Robotics Garden
Figure 2-22
Modernized Agriculture Telegarden, As Installed At Ars Electronica
Table 2-23
Voluntary Cow Traffic Benefits
Table 2-24
Cow Traffic System Cubicles ROI Metrics
Table 2-25
Lely Example of Herd Size and Robots / Farm Worker
Table 2-26
Roles of Agricultural Robots
Figure 2-27
Cost Structures and Roles of Agricultural Robots
Figure 2-28
Agricultural Robotic Regional Market Segments, 2013
Table 2-29
Agricultural Robot Regional Market Segments, 2013
Figure 3-1

John Deere Autonomous Tractors
Figure 3-2
John Deere Autonomous Tractor Flexible Uses
Figure 3-3
John Deere Crop Spraying
Figure 3-4
Kuka Agricultural Robots
Figure 3-5
Kuka Material Handling Robots
Figure 3-6
Kuka Industry Standard Robots Used in Agriculture
Figure 3-7
Kuka Welding Robots in the Agricultural Industry
Figure 3-8
Kuka Robots in the Agricultural Industry
Figure 3-9
Kuka Robots in the Food Processing Industry
Figure 3-10
Kuka Agricultural Robots
Figure 3-11
Kuka Plasma Cutting Robot

Figure 3-12
Fanuc M-3iA Robots Sorting Boxes
Figure 3-13
FANUC Robodrill DiA5 Series
Figure 3-14
FANUC Welding Robots
Figure 3-15
FANUC Material Handling Robots
Figure 3-16
FANUC Plasma Cutting Robot
Figure 3-17
ABB Welding Robots
Figure 3-18
ABB Material Handling Robots
Figure 3-19
Yaskawa Plasma Cutting Robot
Figure 3-20
Yaskawa Robots Used in Agriculture
Figure 3-21
Yaskawa Industrial AC Drives 1/8 thru 1750 Horsepower

Figure 3-22
Yaskawa Specialty Pump Drives 3/4 thru 500 Horsepower
Figure 3-23
Motoman Robot Handling and Palletizing Bags of Livestock Feed
Table 3-24
Motoman Robot Handling and Palletizing Bags of Livestock
Feed Project Challenges
Table 3-25
Motoman Agriculture Robotics Palletizing Bags Solution
Table 3-26
Motoman Agricultural Grain Bin Dryer Fan Wheels Project Challenges
Table 3- 27
Motoman Agricultural Grain Bin Dryer Fan Wheels Robotics Solution
Figure 3-28
Motoman Agricultural Irrigation Pipe
Table 3-29
Motoman Agricultural Irrigation Pipe Project Challenges
Table 3-30
Motoman Agricultural Irrigation Pipe
Robotics Solution
Figure 3-31

Motoman Agricultural Equipment
Table 3-32
Motoman Agricultural Equipment Project Challenges
Table 3-33
Motoman Agricultural Equipment Robotics Solution
Figure 3-34
Motoman Round Baler Pickup Frames for Agricultural Equipment
Table 3-35
Motoman Round Baler Pickup Frames for Agricultural Equipment Project Challenges
Table 3-36
Motoman Round Baler Pickup Frames for Agricultural
Equipment Robotics Solution
Figure 3-37
Motoman Skid Steer Loader Mount Plates
Table 3-38
Motoman Skid Steer Loader Mount Plates Project Challenges
Table 3-39
Motoman Skid Steer Loader Mount Plates Robotics Solution
Figure 3-40
Motoman Bags of Livestock Feed
Table 3-41
Motoman Bags of Livestock Feed Project Challenges

Table 3-42
Motoman Bags of Livestock Feed Robotics Solution
Figure 3-43
Harvest Automation Shrub Robot
Figure 3-44
Harvest Automation Shrub Robot In Garden
Figure 3-45
Harvest Automation Robot Provides Marketplace Sustainability
Table 3-46
Harvest Automation Shrub Robot Features:
Table 3-47
Harvest Automation Shrub Robot Functions:
Figure 3-48
Robotic Harvesting of Strawberries
Figure 3-49
Agrobot SW 6010
Figure 3-50
Agrobot AGB: Harvesting High Level System
Figure 3-51
Agrobot AG Vision
Figure 3-60

Blue River Technology Agricultural Robot
Figure 3-61
Blue River Precision Lettuce Thinning Agricultural Robot
Table 3-62
Blue River Technology Agricultural Robot Functions
Figure 3-63
Blue River Precision Lettuce Thinning - 80/84" beds
Table 3-64
cRops Robotic Platform Functions
Table 3-65
cRops Robot System European Project Supporters
Figure 3-66
cRops Robot System
Figure 3-67
cRops Robot Target System
Figure 3-68
Jaybridge Robotics Driverless Tractor
Figure 3-69
IBM / Bari Fishing Market App
Figure 3-70

IBM / Bari Real Time Fishing Market App
Figure 3-71
IBM / Bari Fishing Market Need Matching App
Figure 3-72
Small Tractor Used For Manual Artichokes Harvesting
Figure 3-73
LSU AgBot
Table 3-74
Harvard Robobee Robot Applications
Table 3-75
Nature-Inspired Robotic Research Aims
Figure 3-76
Robobee Boby, Brain, Colony
Figure 3-77
Harvard Robobee Propulsive Efficiency
Figure 3-78
Robobee Boby, Brain, Colony
Figure 3-79
Harvard Robobee Studies of Stability And Control In Unsteady,

Structured Wakes
Table 3-80
Harvard Robobee Sensor Networks
Figure 3-81
Harvard Robobee Computationally-Efficient Control System
Table 3-82
Harvard Robobee Sensor Network Design Challenges
Table 3-83
Harvard Robobee Challenges In Development Of A Sensor Network
Table 3-84
Harvard Robobee Sensor Network Context Challenges
Table 3-85
Harvard Robobee Sensor Network Elements
Table 3-86
Harvard Robobee Sensor Network Limitations
Table 3-87
Harvard Robobee Software Language Limitations
Table 3-88
Harvard Robobee Software Language Current Efforts
Figure 3-89
Robomow RL850 Automatic Lawn Mower
Figure 3-90
MIT smart gardener robot
Figure 3-91
Carnegie Mellon Self-Guided Farm Equipment
Figure 3-92
Carnegie Mellon Self-Guided Equipment Running on Farm
Figure -3-93
Cesar the LettuceBot


Figure 3-94
Benefits of Lettuce Harvesting Robot
Figure 3-95
Rosphere
Figure 3-96
Rosphere Induction Of Forward/Backward And Turning Movements
Figure 3-97
University of California, Davis Robot For Harvesting Strawberries
Table 3-98
Wall-Ye V.I.N. Robot Functions
Table 3-99
Wall-Ye V.I.N. Robot Technology
Table 3-100
Wall-Ye V.I.N. Robot Features
Figure 3-101
Vision Robotics Snippy Robotic Vine Pruner
Figure 3-102
Nogchui Autonomous Tractor Grading
Figure 3-103
Nogchui Autonomous Tractor Working Field
Figure 3-104
Professor Nogchui Autonomous Tractor Navigation Map Information
Figure 3-105
Microsoft Agricultural Robot Software
Figure 3-106
Herder Robotic Rover
Figure 3-107
Chinese Farmbot Tractor Image
Figure 3-108

3D Robotics
Figure 3-109
3D Robotics Drone Spray Application
Figure 3-110
3D Robotics Uses Pesticides And Fungicides Only When Needed
Figure 3-111
3D Robotics Data For Marketing
Figure 3-112
3D Robotics Aerial Views of Crops
Figure 3-113
3D Robotics Aerial Views Multicopter To Fly Over Vineyards
Figure 3-114
Lely Automatic Milking
Figure 3-115
Astronaut Milking Robot
Figure 3-116
Lely Milking System Farm
Figure 3-117
Lely Cattle Feeding System Farm
Figure 3-118
Lely Automated Process for Managing Milking and Farm
Figure 3-119

Lely Correct Cattle Feeding Management
Figure 3-120
Lely Automated Process Cattle Feeding Management
Figure 3-121
Lely Multi-Barn Cattle Feeding Management
Figure 3-122
Lely Cattle Milking Management
Figure 3-123
Kyoto University Tomato Harvesting Robot
Figure 3-124
Kyoto University Fruit Harvesting Robots In Greenhouse
Figure 3-125
Kyoto University Tomato Cluster Harvesting Robot
Figure 3-126
Kyoto University Strawberry Harvesting Robot In Plant Factory
Figure 3-127
RHEA Robot Fleets for Seeding
Figure 3-128
RHEA Robot Fleet Mapping for Seeding
Figure 3-129
Robot Fleet Deterministic Route Planning for Seeding
Figure 3-130
Orthogonal Inter Row Mechanical Weeding for Organic Farming
Table 3-131

HGCA Laser Weeding
Figure 3-132
RHEA Laser Weeding
Figure 3-133
RHEA Horibot Cutter and Sprayer
Figure 3-134
RHEA Broad leafed Weed Sensing And Spraying
Table 3-135
RHEA Broad Leafed Weed Sensing And Spraying
Figure 3-136
RHEA Multiple Small Intelligent Machines Replace Large Manned Tractors
Figure 3-137
RHEA Cooperative Fleet Of Robots
Figure 3-138
RHEA Hexacopter (Aerial Mobile Unit)
Table 4-1
Harvest Automation Proprietary Sensor Technology Functions
Table 4-2
Harvest Automation Robot System Architecture
Table 4-3
Proprietary Sensor Technology
Table 4-4
System Design & Architecture
Table 4-5
Tight Scientific Collaboration Between Different Disciplines
Figure 4-6
IEEE Agricultural Robots
Figure 4-7
IEEE Orchard Robots
Figure 4-8
IEEE Automated Agricultural Robot

Table 5-1
ABB Product Launches
Table 5-2
ABB Global Lab Target Technologies
Table 5-3
ABB's Global Lab Automation Target Solutions
Table 5-4
ABB Active Current Research Areas
Figure 5-5
Agrobot Strawberry Picker
Figure 5-6
Agrobot Strawberry Picker
Figure 5-7
Agrobot Robot for Agriculture
Table 5-8
Agrobot Innovation and Technology for Agribusiness
Figure 5-9
Agrobot Innovation and Technology for Agribusiness
Table 5-10
Agrobot SW6010 Support
Table 5-11
cRops technology Functions
Table 5-12
cRops Intelligent Tools
Table 5-13
cRops Target Markets
Table 5-14
cRops Robotic Platform Customized Automated Processes
Figure 5-15

Fanuc Revenue
Figure 5-16
Fanuc Revenue
Figure 5-17
Boston Dynamic LS3
Figure 5-18
Boston Dynamic CHEETAH
Figure 5-19
Boston Dynamic Atlas
Figure 5-20
Boston Dynamic BigDog
Figure 5-21
Boston Dynamics LittleDog -
Table 5-22
Google Autonomous Vehicles Technology
Table 5-23
Harvard Robobee Project Characteristics
Figure 5-24
Harvard Robobee Kilobot Robot Group
Table 5-25
Harvest Automation Robot Navigation
Table 5-26
Harvest Automation Robot Sensor Network Functions
Table 5-27
IBM Systems Target Industries
Table 5-28
Jaybridge Robotics Software Solutions
Table 5-29
Jaybridge Robotics Software Functions
Figure 5-30
Kuka Positioning with Smart Tools
Figure 5-31
Lely's Astronaut A4 Milking Robot
Table 5-32
Millennial Net's MeshScape System Functions
Table 5-33

MeshScape GO Deployment Components:
Table 5-34
National Agriculture and Food Research Organization (NARO) Plan Goals
Figure 5-35
Precise Path Robotics
Figure 5-36
Sicily Small Tractor Used For Manual Artichoke Harvesting
Figure 5-37
Shibuya Kogyo Robotic System For Leaflet & Spoon Placement
Figure 5-38
Shibuya Kogyo Robotic Collating System
Figure 5-39
Shibuya Kogyo Automated Aseptic Environmental Monitoring System
Table 5-40
Universidad Politécnica de Madrid Projects
Figure 5-41
UC Davis Using Yahama Helicopter Drones For Crop Dusting
Figure 5-42
Yamaha Crop Dusting Initiatives
Figure 5-43
YASKAWA Electric Group Businesses

To order this report: Agricultural Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020
http://www.reportlinker.com/p02003735/Agricultural-Robots-Market-Shares-Strategies-and-Forecasts-Worldwide-2014-to-2020.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Agriculture

__________________________
Contact Clare: clare@reportlinker.com
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Whether you're a startup or a 100 year old enterprise, the Internet of Things offers a variety of new capabilities for your business. IoT style solutions can help you get closer your customers, launch new product lines and take over an industry. Some companies are dipping their toes in, but many have already taken the plunge, all while dramatic new capabilities continue to emerge. In his session at Internet of @ThingsExpo, Reid Carlberg, Senior Director, Developer Evangelism at salesforce.com, to discuss real-world use cases, patterns and opportunities you can harness today.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...