Click here to close now.


IBM Cloud Authors: Elizabeth White, Jennifer Gill, Betty Zakheim, Liz McMillan, Greg O'Connor

News Feed Item

New IBM SyNAPSE Chip Could Open Era of Vast Neural Networks

New chip with brain-inspired non-von Neumann computer architecture has one million neurons and 256 million synapses

SAN JOSE, Calif., Aug. 7, 2014 /PRNewswire/ -- Scientists from IBM (NYSE: IBM) today unveiled the first neurosynaptic computer chip to achieve an unprecedented scale of one million programmable neurons, 256 million programmable synapses and 46 billion synaptic operations per second per watt. At 5.4 billion transistors, this fully functional and production-scale chip is currently one of the largest CMOS chips ever built, yet, while running at biological real time, it consumes a minuscule 70mW—orders of magnitude less power than a modern microprocessor. A neurosynaptic supercomputer the size of a postage stamp that runs on the energy equivalent of a hearing-aid battery, this technology could transform science, technology, business, government, and society by enabling vision, audition, and multi-sensory applications.

IBM Corporation logo.

Today's breakthrough, published in Science in collaboration with Cornell Tech, is a significant step towards bringing cognitive computers to society.

There is a huge disparity between the human brain's cognitive capability and ultra-low power consumption when compared to today's computers. To bridge the divide, IBM scientists created something that didn't previously exist—an entirely new neuroscience-inspired scalable and efficient computer architecture that breaks path with the prevailing von Neumann architecture used almost universally since 1946.

This second generation chip is the culmination of almost a decade of research and development, including the initial single core hardware prototype in 2011 and software ecosystem with a new programming language and chip simulator in 2013.

The new cognitive chip architecture has an on-chip two-dimensional mesh network of 4096 digital, distributed neurosynaptic cores, where each core module integrates memory, computation, and communication, and operates in an event-driven, parallel, and fault-tolerant fashion. To enable system scaling beyond single-chip boundaries, adjacent chips, when tiled, can seamlessly connect to each other—building a foundation for future neurosynaptic supercomputers. To demonstrate scalability, IBM also revealed a 16-chip system with sixteen million programmable neurons and four billion programmable synapses.

"IBM has broken new ground in the field of brain-inspired computers, in terms of a radically new architecture, unprecedented scale, unparalleled power/area/speed efficiency, boundless scalability, and innovative design techniques. We foresee new generations of information technology systems – that complement today's von Neumann machines – powered by an evolving ecosystem of systems, software, and services," said Dr. Dharmendra S. Modha, IBM Fellow and IBM Chief Scientist, Brain-Inspired Computing, IBM Research. "These brain-inspired chips could transform mobility, via sensory and intelligent applications that can fit in the palm of your hand but without the need for Wi-Fi. This achievement underscores IBM's leadership role at pivotal transformational moments in the history of computing via long-term investment in organic innovation."

The Defense Advanced Research Projects Agency (DARPA) has funded the project since 2008 with approximately $53M via Phase 0, Phase 1, Phase 2, and Phase 3 of the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program. Current collaborators include Cornell Tech and iniLabs, Ltd.

Building the Chip

The chip was fabricated using Samsung's 28nm process technology that has a dense on-chip memory and low-leakage transistors. 

"It is an astonishing achievement to leverage a process traditionally used for commercially available, low-power mobile devices to deliver a chip that emulates the human brain by processing extreme amounts of sensory information with very little power," said Shawn Han, vice president of Foundry Marketing, Samsung Electronics. "This is a huge architectural breakthrough that is essential as the industry moves toward the next-generation cloud and big-data processing. It's a pleasure to be part of technical progress for next-generation through Samsung's 28nm technology."

The event-driven circuit elements of the chip used the asynchronous design methodology developed at Cornell Tech and refined with IBM since 2008.

"After years of collaboration with IBM, we are now a step closer to building a computer similar to our brain," said Professor Rajit Manohar, Cornell Tech.

The combination of cutting-edge process technology, hybrid asynchronous-synchronous design methodology, and new architecture has led to a power density of 20mW/cm2 which is nearly four orders of magnitude less than today's microprocessors.

Advancing the SyNAPSE Ecosystem
The new chip is a component of a complete end-to-end vertically integrated ecosystem spanning a chip simulator, neuroscience data, supercomputing, neuron specification, programming paradigm, algorithms and applications, and prototype design models.  The ecosystem supports all aspects of the programming cycle from design through development, debugging, and deployment.

To bring forth this fundamentally different technological capability to society, IBM has designed a novel teaching curriculum for universities, customers, partners, and IBM employees.

Applications and Vision
This ecosystem signals a shift in moving computation closer to the data, taking in vastly varied kinds of sensory data, analyzing and integrating real-time information in a context-dependent way, and dealing with the ambiguity found in complex, real-world environments.

Looking to the future, IBM is working on integrating multi-sensory neurosynaptic processing into mobile devices constrained by power, volume and speed; integrating novel event-driven sensors with the chip; real-time multimedia cloud services accelerated by neurosynaptic systems; and neurosynaptic supercomputers by tiling multiple chips on a board, creating systems that would eventually scale to one hundred trillion synapses and beyond.

Building on previously demonstrated neurosynaptic cores with on-chip, online learning, IBM envisions building learning systems that adapt in real world settings. While today's hardware is fabricated using a modern CMOS process, the underlying architecture is poised to exploit advances in future memory, 3D integration, logic, and sensor technologies to deliver even lower power, denser package, and faster speed.

The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. Approved for Public Release, Distribution Unlimited.

Media Contact
Ari Entin

A brain-inspired chip to transform mobility and Internet of Things through sensory perception


Logo -
Photo -


More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Countless business models have spawned from the IaaS industry – resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his general session at 17th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, an IBM Company, broke down what we have to work with, discussed the benefits and pitfalls and how we can best use them to design hosted applications.
Most of the IoT Gateway scenarios involve collecting data from machines/processing and pushing data upstream to cloud for further analytics. The gateway hardware varies from Raspberry Pi to Industrial PCs. The document states the process of allowing deploying polyglot data pipelining software with the clear notion of supporting immutability. In his session at @ThingsExpo, Shashank Jain, a development architect for SAP Labs, discussed the objective, which is to automate the IoT deployment process from development to production scenarios using Docker containers.
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningful and actionable insights. In his session at @ThingsExpo, Paul Turner, Chief Marketing Officer at...
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, demonstrated examples of com...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessions, I wanted to share some of my observations on emerging trends. As cyber security serves as a fou...
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now all corporate assets – people, objects, and spaces – can share information about themselves and thei...
The cloud. Like a comic book superhero, there seems to be no problem it can’t fix or cost it can’t slash. Yet making the transition is not always easy and production environments are still largely on premise. Taking some practical and sensible steps to reduce risk can also help provide a basis for a successful cloud transition. A plethora of surveys from the likes of IDG and Gartner show that more than 70 percent of enterprises have deployed at least one or more cloud application or workload. Yet a closer inspection at the data reveals less than half of these cloud projects involve production...
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true change and transformation possible.
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" in this scenario: microservice A (releases daily) depends on a couple of additions to backend B (re...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Container technology is shaping the future of DevOps and it’s also changing the way organizations think about application development. With the rise of mobile applications in the enterprise, businesses are abandoning year-long development cycles and embracing technologies that enable rapid development and continuous deployment of apps. In his session at DevOps Summit, Kurt Collins, Developer Evangelist at, examined how Docker has evolved into a highly effective tool for application delivery by allowing increasingly popular Mobile Backend-as-a-Service (mBaaS) platforms to quickly crea...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound effect on the world, and what should we expect to see over the next couple of years.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, wil...
PubNub has announced the release of BLOCKS, a set of customizable microservices that give developers a simple way to add code and deploy features for realtime apps.PubNub BLOCKS executes business logic directly on the data streaming through PubNub’s network without splitting it off to an intermediary server controlled by the customer. This revolutionary approach streamlines app development, reduces endpoint-to-endpoint latency, and allows apps to better leverage the enormous scalability of PubNub’s Data Stream Network.